Fish provides more than 4.5 billion people with at least 15 % of their average per capita intake of animal protein.Fish's unique nutritional properties make it also essential to the health of billions of consumers in both developed and developing countries. Fish is one of the most efficient converters of feed into high quality food and its carbon footprint is lower compared to other animal production systems. Through fish-related activities (fisheries and aquaculture but also processing and trading), fish contribute substantially to the income and therefore to the indirect food security of more than 10 % of the world population, essentially in developing and emergent countries. Yet, limited attention has been given so far to fish as a key element in food security and nutrition strategies at national level and in wider development discussions and interventions. As a result, the tremendous potential for improving food security and nutrition embodied in the strengthening of the fishery and aquaculture sectors is missed. The purpose of this paper is to make a case for a closer integration of fish into the overall debate and future policy about food security and nutrition. For this, we review the evidence from the contemporary and emerging debates and controversies around fisheries and aquaculture and we discuss them in the light of the issues debated in the wider agriculture/farming literature. The overarching question that underlies this paper is: how and to what extent will fish be able to contribute to feeding 9 billion people in 2050 and beyond?
Existing methods to predict the effects of climate change on the biomass and production of marine communities are predicated on modelling the interactions and dynamics of individual species, a very challenging approach when interactions and distributions are changing and little is known about the ecological mechanisms driving the responses of many species. An informative parallel approach is to develop size-based methods. These capture the properties of food webs that describe energy flux and production at a particular size, independent of species' ecology. We couple a physical–biogeochemical model with a dynamic, size-based food web model to predict the future effects of climate change on fish biomass and production in 11 large regional shelf seas, with and without fishing effects. Changes in potential fish production are shown to most strongly mirror changes in phytoplankton production. We project declines of 30–60% in potential fish production across some important areas of tropical shelf and upwelling seas, most notably in the eastern Indo-Pacific, the northern Humboldt and the North Canary Current. Conversely, in some areas of the high latitude shelf seas, the production of pelagic predators was projected to increase by 28–89%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.