This is the second of two papers that study the asymptotic structure of space-times with a non-negative cosmological constant Λ. This paper deals with the case Λ>0. Our approach is founded on the `tidal energies' built with the Weyl curvature and, specifically, we use the asymptotic super-Poynting vector computed from the rescaled Bel-Robinson tensor at infinity to provide a covariant, gauge-invariant, criterion for the existence, or absence, of gravitational radiation at infinity. The fundamental idea we put forward is that the physical asymptotic properties are encoded in $(\scri,h_{ab},D_{ab})$, where the first element of the triplet is a 3-dimensional manifold, the second is a representative of a conformal class of Riemannian metrics on $\scri$, and the third element is a traceless symmetric tensor field on $\scri$. We similarly propose a no-incoming radiation criterion based also on the triplet $(\scri,h_{ab},D_{ab})$ and on radiant supermomenta deduced from the rescaled Bel-Robinson tensor too. We search for news tensors and argue that any news-like object must be associated to, and depends on, 2-dimensional cross-sections of $\scri$. We identify one component of news for every such cross-section and present a general strategy to find the second component. We also introduce the concept of equipped $\scri$, consider the limit Λ→0 and apply all our results to selected exact solutions of Einstein Field Equations. The full-length abstract is available in the paper.
This is the first of two papers [1] devoted to the asymptotic structure of space-time in the presence of a non-negative cosmological constant Λ. This first paper is concerned with the case of Λ = 0. Our approach is fully based on the tidal nature of the gravitational field and therefore on the ‘tidal energies’ built with the Weyl curvature. In particular, we use the (radiant) asymptotic supermomenta computed from the rescaled Weyl tensor at infinity to provide a novel characterisation of radiation escaping from, or entering into, the space-time. Our new criterion is easy to implement and shown to be fully equivalent to the classical one based on the news tensor. One of its virtues is that its formulation can be easily adapted to the case with Λ > 0 covered in the second paper. We derive the general energy-momentum-loss formulae including the matter terms and all factors associated to the choices of arbitrary foliation and of super- translation. We also revisit and present a full reformulation of the traditional peeling behaviour with a neat geometrical construction that leads, in particular, to an asymptotic alignment of the supermomenta in accordance with the radiation criterion.
A method for deriving the asymptotic behaviour of any physical field is presented. This leads to a geometrically meaningful derivation of the peeling properties for arbitrary values of the cosmological constant. Application to the outstanding case of the physical Weyl tensor provides the explicit form of all terms that determine its asymptotic behaviour along arbitrary lightlike geodesics. The results follow under the assumption of a conformal completion à la Penrose. The only freedom available is the choice of a null vector at the conformal boundary of the space-time (which determines the lightlike geodesic arriving there).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.