The penicillin biosynthetic genes (pcbAB, pcbC,penDE) ofPenicillium chrysogenum AS-P-78 were located in a 106.5-kb DNA region that is amplified in tandem repeats (five or six copies) linked by conserved TTTACA sequences. The wild-type strains P. chrysogenum NRRL 1951 and Penicillium notatum ATCC 9478 (Fleming's isolate) contain a single copy of the 106.5-kb region. This region was bordered by the same TTTACA hexanucleotide found between tandem repeats in strain AS-P-78. A penicillin overproducer strain, P. chrysogenum El, contains a large number of copies in tandem of a 57.9-kb DNA fragment, linked by the same hexanucleotide or its reverse complementary TGTAAA sequence. The deletion mutant P. chrysogenum npelO showed a deletion of 57.9 kb that corresponds exactly to the DNA fragment that is amplified in
Fungal heterotrimeric G proteins regulate different processes related to development, such as colony growth and asexual sporulation, the main mechanism of propagation in filamentous fungi. To gain insight into the mechanisms controlling growth and differentiation in the industrial penicillin producer Penicillioum chrysogenum, we investigated the role of the heterotrimeric Galpha subunit Pga1 in conidiogenesis. A pga1 deleted strain (Deltapga1) and transformants with constitutively activated (pga1G42R) and inactivated (pga1G203R) Pga1 alpha subunits were obtained. They showed phenotypes that clearly implicate Pga1 as an important negative regulator of conidiogenesis. Pga1 positively affected the level of intracellular cAMP, which acts as secondary messenger of Pga1-mediated signalling. Although cAMP has some inhibitory effect on conidiation, the regulation of asexual development by Pga1 is exerted mainly via cAMP-independent pathways. The regulation of conidiation by Pga1 is mediated by repression of the brlA and wetA genes. The Deltapga1 strain and transformants with the constitutively inactive Pga1G203R subunit developed a sporulation microcycle in submerged cultures triggered by the expression of brlA and wetA genes, which are deregulated in the absence of active Pga1. Our results indicate that although basic mechanisms for regulating conidiation are similar in most filamentous fungi, there are differences in the degree of involvement of specific pathways, such as the cAMP-mediated pathway, in the regulation of this process.
Four chromosomes were resolved by pulsed field gel electrophoresis in Penicillium notatum (10.8, 9.6, 6.3 and 5.4 Mb in size) and in five different strains of Penicillium chrysogenum (10.4, 9.6, 7.3 and 6.8 Mb in the wild type). Small differences in size were found between the four chromosomes of the five P. chrysogenum strains. The penicillin gene cluster was localized by hybridization with a pcbAB probe to chromosome II of P. notatum and to chromosome I of all P. chrysogenum strains except the deletion mutant P. chrysogenum npe10, which lacks this DNA region. The pyrG gene was localized to chromosome I in P. notatum and to chromosome II in all P. chrysogenum strains except in the mutant AS-P-78 where the probe hybridized to chromosome III. A major chromosomal rearrangement seems to have occurred in this high penicillin producing strain. A fast moving DNA band observed in all gels corresponds to mitochondrial DNA. The total genome size has been calculated as 32.1 Mb in P. notatum and 34.1 Mb for the P. chrysogenum strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.