Design requirements for different mechanical metamaterials, porous constructions and lattice structures, employed as tissue engineering scaffolds, lead to multi-objective optimizations, due to the complex mechanical features of the biological tissues and structures they should mimic. In some cases, the use of conventional design and simulation methods for designing such tissue engineering scaffolds cannot be applied because of geometrical complexity, manufacturing defects or large aspect ratios leading to numerical mismatches. Artificial intelligence (AI) in general, and machine learning (ML) methods in particular, are already finding applications in tissue engineering and they can prove transformative resources for supporting designers in the field of regenerative medicine. In this study, the use of 3D convolutional neural networks (3D CNNs), trained using digital tomographies obtained from the CAD models, is validated as a powerful resource for predicting the mechanical properties of innovative scaffolds. The presented AI-aided or ML-aided design strategy is believed as an innovative approach in area of tissue engineering scaffolds, and of mechanical metamaterials in general. This strategy may lead to several applications beyond the tissue engineering field, as we analyze in the discussion and future proposals sections of the research study.
Artificial intelligence (AI) has emerged as a powerful set of tools for engineering innovative materials. However, the AI-aided design of materials textures has not yet been researched in depth. In order to explore the potentials of AI for discovering innovative biointerfaces and engineering materials surfaces, especially for biomedical applications, this study focuses on the control of wettability through design-controlled hierarchical surfaces, whose design is supported and its performance predicted thanks to adequately structured and trained artificial neural networks (ANN). The authors explain the creation of a comprehensive library of microtextured surfaces with well-known wettability properties. Such a library is processed and employed for the generation and training of artificial neural networks, which can predict the actual wetting performance of new design biointerfaces. The present research demonstrates that AI can importantly support the engineering of innovative hierarchical or multiscale surfaces when complex-to-model properties and phenomena, such as wettability and wetting, are involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.