Summary
Here, the function of the tomato (Solanum lycopersicon) K+/H+ antiporter LeNHX2 was studied using 35S‐driven gene overexpression of a histagged LeNHX2 protein in Arabidopsis thaliana and LeNHX2 gene silencing in tomato.
Transgenic A. thaliana plants expressed the histagged LeNHX2 both in shoots and in roots, as assayed by western blotting. Transitory expression of a green fluorescent protein (GFP) tagged protein showed that the antiporter is present in small vesicles. Internal membrane vesicles from transgenic plants displayed enhanced K+/H+ exchange activity, confirming the K+/H+ antiporter function of this enzyme. Transgenic A. thaliana plants overexpressing the histagged tomato antiporter LeNHX2 exhibited inhibited growth in the absence of K+ in the growth medium, but were more tolerant to high concentrations of Na+ than untransformed controls. When grown in the presence of NaCl, transgenic plants contained lower concentrations of intracellular Na+, but more K+, as compared with untransformed controls.
Silencing of LeNHX2 in S. lycopersicon plants produced significant inhibition of plant growth and fruit and seed production as well as increased sensitivity to NaCl.
The data indicate that regulation of K+ homeostasis by LeNHX2 is essential for normal plant growth and development, and plays an important role in the response to salt stress by improving K+ accumulation.
Although physiological and biochemical data since long suggested that Na(+)/H(+) and K(+)/H(+) antiporters are involved in intracellular ion and pH regulation in plants, it has taken a long time to identify genes encoding antiporters that could fulfil these roles. Genome sequencing projects have now shown that plants contain a very large number of putative Cation/Proton antiporters, the function of which is only beginning to be studied. The intracellular NHX transporters constitute the first Cation/Proton exchanger family studied in plants. The founding member, AtNHX1, was identified as an important salt tolerance determinant and suggested to catalyze Na(+) accumulation in vacuoles. It is, however, becoming increasingly clear, that this gene and other members of the family also play crucial roles in pH regulation and K(+) homeostasis, regulating processes from vesicle trafficking and cell expansion to plant development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.