The cryptanalytic resistance of modern block and stream encryption systems mainly depends on the substitution box (S-box). In this context, the problem is thus to create an S-box with higher value of nonlinearity because this property can provide some degree of protection against linear and differential cryptanalysis attacks. In this paper, we design a scheme built on a human behavior-based optimization algorithm, supported with Self-Organizing Maps to prevent premature convergence and improve the nonlinearity property in order to obtain strong 8 × 8 substitution boxes. The experiments are compared with S-boxes obtained using other metaheuristic algorithms such as Ant Colony Optimization, Genetic Algorithm and an approach based on chaotic functions and show that the obtained S-boxes have good cryptographic properties. The obtained S-box is investigated against standard tests such as bijectivity, nonlinearity, strict avalanche criterion, bit independence criterion, linear probability and differential probability, proving that the proposed scheme is proficient to discover a strong nonlinear component of encryption systems.
The main component of a cryptographic system that allows us to ensure its strength against attacks, is the substitution box. The strength of this component can be validated by various metrics, one of them being the nonlinearity. To this end, it is essential to develop a design for substitution boxes that allows us to guarantee compliance with this metric. In this work, we implemented a hybrid between the stochastic fractal search algorithm in conjunction with opposition-based learning. This design is supported by sequential model algorithm configuration for the proper parameters configuration. We obtained substitution boxes of high nonlinearity in comparison with other works based on metaheuristics and chaotic schemes. The proposed substitution box is evaluated using bijectivity, the strict avalanche criterion, nonlinearity, linear probability, differential probability and bit-independence criterion, which demonstrate the excellent performance of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.