SUMMARYThe # component model was proposed to meet the growing demands of new complex applications of science and engineering that require productive and efficient use of high-performance computing architectures. This paper presents the principles, intuition, and theories underlying the # component model, and the design of an architecture for programming frameworks that comply to the # component model.
International audienceThis work presents a GPU-based backtracking algorithm for permutation combinatorial problems based on the Integer-Vector-Matrix (IVM) data structure. IVM is a data structure dedicated to permutation combinatorial optimization problems. In this algorithm, the load balancing is performed without intervention of the CPU, inside a work stealing phase invoked after each node expansion phase. The proposed work stealing approach uses a virtual n-dimensional hypercube topology and a triggering mechanism to reduce the overhead incurred by dynamic load balancing. We have implemented this new algorithm for solving instances of the Asymmetric Travelling Salesman Problem by implicit enumeration, a scenario where the cost of node evaluation is low, compared to the overall search procedure. Experimental results show that the dynamically load balanced IVM-algorithm reaches speed-ups up to 17X over a serial implementation using a bitset-data structure and up to 2X over its GPU counterpart
The efforts to make cloud computing suitable for the requirements of HPC applications have motivated us to design HPC Shelf, a cloud computing platform of services for building and deploying parallel computing systems for large-scale parallel processing. We introduce Alite, the system of contextual contracts of HPC Shelf, aimed at selecting component implementations according to requirements of applications, features of targeting parallel computing platforms (e.g. clusters), QoS (Quality-of-Service) properties and cost restrictions. It is evaluated through a small-scale case study employing a componentbased framework for matrix-multiplication based on the BLAS library.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.