Genetic algorithms are tools for searching in complex spaces and they have been used successfully in the system identification solution that is an inverse problem. Chromatography models are represented by systems of partial differential equations with non-linear parameters which are, in general, difficult to estimate many times. In this work a genetic algorithm is used to solve the inverse problem of parameters estimation in a model of protein adsorption by batch chromatography process. Each population individual represents a supposed condition to the direct solution of the partial differential equation system, so the computation of the fitness can be time consuming if the population is large. To avoid this difficulty, the implemented genetic algorithm divides the population into clusters, whose representatives are evaluated, while the fitness of the remaining individuals is calculated in function of their distances from the representatives. Simulation and practical studies illustrate the computational time saving of the proposed genetic algorithm and show that it is an effective solution method for this type of application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.