Cable-stayed bridges are widely used all around the world. Unfortunately, during their service life, they are exposed to adverse conditions that may cause their deterioration and, consequently, their collapse. Vibration-based structural health monitoring techniques have become the most promising alternatives for efficiently detecting and locating damage into civil structures. In this regard, this paper presents a new methodology based on statistical features, Principal component analysis (PCA), and Mahalanobis distance (MD) for detecting and locating a cable loss in the Río Papaloapan bridge (RPB) using vibration signals. It is based on the extraction of a set of statistical time features (STFs) from vibration signals, which are analyzed using the autocorrelation function (ACF) to denoise and strengthen the features found in them. Then PCA-based models are computed by using the STFs to enhance the damage location process. Then a new damage index based on MD is proposed to indicate if a damage exists and its location.
Large civil structures such as bridges must be permanently monitored to ensure integrity and avoid collapses due to damage resulting in devastating human fatalities and economic losses. In this article, a wavelet-based method called the Wavelet Energy Accumulation Method (WEAM) is developed in order to detect, locate and quantify damage in vehicular bridges. The WEAM consists of measuring the vibration signals on different points along the bridge while a vehicle crosses it, then those signals and the corresponding ones of the healthy bridge are subtracted and the Continuous Wavelet Transform (CWT) is applied on both, the healthy and the subtracted signals, to obtain the corresponding diagrams, which provide a clue about where the damage is located; then, the border effects must be eliminated. Finally, the Wavelet Energy (WE) is obtained by calculating the area under the curve along the selected range of scale for each point of the bridge deck. The energy of a healthy bridge is low and flat, whereas for a damaged bridge there is a WE accumulation at the damage location. The Rio Papaloapan Bridge (RPB) is considered for this research and the results obtained numerically and experimentally are very promissory to apply this method and avoid accidents.
Concrete beams are elements used in many civil structures; unfortunately, they can contain cracks that lead to the collapse of the structures if those defects are not detected early enough. In this article, a new method to determine the structural condition of concrete beams subjected to bending is proposed. In general, it is based on the processing of the acoustic emissions (AE) signals, which are generated during the application of a load, by using the mathematical tool called wavelet transform (WT). The sound of the internal energy/crack is recorded as a hit or AE signal event; then, those signals acquired as waveforms are post-processed with the continuous WT (CWT); then, the wavelet energy (WE) is calculated for each hit by using an adequate scale range and the most convenient mother wavelet. Thus, with this method, it is possible to determine the structural condition (healthy or damaged) of concrete beams subjected to bending just by calculating the WE of any hit at any time and, even more, it is possible to define more precisely the stage of the structural condition as a healthy condition, micro-cracks appearance, the manifestation of a principal crack (hit with the highest WE), propagation of the principal crack, and final rupture. This method is experimentally validated in the laboratory, and additionally, ultrasonic pulse velocity tests (UPVT) are performed for some specimens to confirm the change between healthy and damaged conditions. The results are promising in order to apply this effective method in concrete beams of real-life structures.
After a catastrophic failure of the weld of the anchoring element of one cable in a stayed bridge, a non-destructive inspection was required to evaluate the weld condition of the 111 remaining anchoring elements to prevent future and similar failures. This examination was quite complicated since the anchoring elements are partially embedded in the reinforced concrete tower, and the weld is fully integrated into the concrete. Considering that direct access to the weld was not possible, acoustic emissions (AE) were a feasible alternative for these inspections. This study describes the inspection method, from laboratory tests simulating actual conditions for calibration to field tests for the method's tuning and evaluation. The AE inspection results are presented, and welds’ condition is classified according to the acoustic energy, measured through a severity index and graded from a zonal intensity plot. Two structural elements were selected for concrete demolition to expose the weld for penetrant and ultrasonic inspections to correlate measurements of the actual condition of the welds and their defect size. Because of the analysis, welds are identified for immediate repair and the rest for AE monitoring to evaluate defect evolution through the increase of the severity index.
A relationship between the corrosion damage and the loss of prestressing load on concrete prestressed metallic structures is proposed after experimental data. Mathematically, the first natural frequency change is related to the reduction on the prestressing load, and as a result, to the corrosion effect. In general, it has been found that the reduction on the prestressing load due to corrosion has a cracking type behaviour with a small variation rate at the beginning and a larger one at the end of the corrosive process.It can be found a similar tendency assuming that the load change is inversely proportional to the crack depth as per fracture mechanics model (stress corrosion cracking).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.