Tumour necrosis factor related apoptosis inducing ligand (TRAIL) binds to death receptor 4 (DR4) activating the apoptotic signalling pathway. DNA damaging agents (genotoxins) such as etoposide increase DR4 expression and when combined with TRAIL induce a synergistic apoptotic response. The mechanism for up-regulation of DR4 expression following genotoxin treatment is not well understood. Herein, we determined that transcription factor NF-kappaB plays a role in genotoxin induced DR4 expression. Increased expression of DR4 following etoposide treatment is blocked by inhibition of the NF-kappaB pathway. Moreover, expression of the p65 subunit of NF-kappaB is sufficient to increase DR4 protein levels. Indeed, knockdown of p65 by RNA interference blocked etoposide up-regulation of DR4. We further identified a functional NF-kappaB binding site located in the DR4 promoter. Mutation of this site abrogates the induction of luciferase activity after p65 over-expression. Furthermore, electromobility shift assays and chromatin immunoprecipitaton suggest that NF-kappaB binds to this site upon etoposide treatment. MEK kinase 1 (MEKK1) is a serine threonine kinase that is activated following etoposide treatment and activates NF-kappaB. Expression of the kinase inactive MEKK1 (MEKK1-KM) abrogates the up-regulation of DR4 after etoposide treatment. Taken together, NF-kappaB plays a role in up-regulation of DR4 following etoposide treatment.
MEK kinase 1 (MEKK1) induces apoptosis through the activation of caspases. The mechanism for MEKK1-induced apoptosis involves caspase-mediated cleavage of MEKK1, releasing a pro-apoptotic 91 kDa kinase fragment that serves to further amplify caspase activation in a feedback loop. Both cleavage of MEKK1 and increased expression of death receptor 4 (DR4, TRAILR1) and death receptor 5 (DR5, TRAILR2) occur following exposure of cells to genotoxins. Overexpression of kinase inactive MEKK1 inhibits MEKK1-mediated apoptosis and effectively blocks death receptor upregulation following etoposide treatment. Herein, we investigate the role of death receptor activation and the ability of AKT/PKB (AKT) to inhibit cell death in MEKK1-induced apoptosis. We show that by preventing DR4 and DR5 activation through expression of decoy receptor 1 (DcR1) and dominant negative FADD, we inhibit MEKK1-induced apoptosis. Furthermore, expression of 91 kDa MEKK1 increased DR4 and FAS mRNA and protein levels. MEKK1-induced apoptosis is amplified by blocking PI-3 kinase activation and overexpression of AKT blocked both MEKK1-induced apoptosis and caspase activation. AKT overexpression also prevented the cleavage of endogenous MEKK1 by genotoxins. AKT did not, however, block MEKK1-induced JNK activation, showing that regulation of the JNK pathway by MEKK1 is independent of its role in regulation of apoptosis. Thus, MEKK1-induced apoptosis requires TRAIL death receptor activation and is blocked by AKT through inhibition of MEKK1 cleavage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.