In this paper, we study the stationary distributions for reflected diffusions with jumps in the positive orthant. Under the assumption that the stationary distribution possesses a density in R
+
n
that satisfies certain finiteness conditions, we characterize the Fokker-Planck equation. We then provide necessary and sufficient conditions for the existence of a product-form distribution for diffusions with oblique boundary reflections and jumps. To do so, we exploit a recent characterization of the boundary properties of such reflected processes. In particular, we show that the conditions generalize those for semimartingale reflecting Brownian motions and reflected Lévy processes. We provide explicit results for some models of interest.
In this paper, we study the stationary distributions for reflected diffusions with jumps in the positive orthant. Under the assumption that the stationary distribution possesses a density inR+nthat satisfies certain finiteness conditions, we characterize the Fokker-Planck equation. We then provide necessary and sufficient conditions for the existence of a product-form distribution for diffusions with oblique boundary reflections and jumps. To do so, we exploit a recent characterization of the boundary properties of such reflected processes. In particular, we show that the conditions generalize those for semimartingale reflecting Brownian motions and reflected Lévy processes. We provide explicit results for some models of interest.
Convergence properties of Shannon Entropy are studied. In the differential setting, it is shown that weak convergence of probability measures, or convergence in distribution, is not enough for convergence of the associated differential entropies. A general result for the desired differential entropy convergence is provided, taking into account both compactly and uncompactly supported densities. Convergence of differential entropy is also characterized in terms of the Kullback-Liebler discriminant for densities with fairly general supports, and it is shown that convergence in variation of probability measures guarantees such convergence under an appropriate boundedness condition on the densities involved. Results for the discrete setting are also provided, allowing for infinitely supported probability measures, by taking advantage of the equivalence between weak convergence and convergence in variation in this setting.
We prove some new pathwise comparison results for single class stochastic
fluid networks. Under fairly general conditions, monotonicity with respect to the
(state- and time-dependent) routing matrices is shown. Under more restrictive assumptions,
monotonicity with respect to the service rates is shown as well. We conclude
by using the comparison results to establish a moment bound, a stability result
for stochastic fluid networks with Lévy inputs, and a comparison result for multi-class
GPS networks.This research was supported in part by a Discovery Grant from the Natural Sciences
and Engineering Research Council of Canada (NSERC)
We consider reflected jump-diffusions in the orthant n + with time-and state-dependent drift, diffusion and jump-amplitude coefficients. Directions of reflection upon hitting boundary faces are also allow to depend on time and state. Pathwise comparison results for this class of processes are provided, as well as absolute continuity properties for their associated regulator processes responsible of keeping the respective diffusions in the orthant. An important role is played by the boundary property in that regulators do not charge times spent by the reflected diffusion at the intersection of two or more boundary faces. The comparison results are then applied to provide an ergodicity condition for the state-dependent reflection directions case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.