The sustainability of “dehesas” is threatened by the Holm oak decline. It is thought that the effects of root rot on plant physiology vary depending on external stress factors. Plant growth and biomass allocation are useful tools to characterize differences in the response to drought and infection. The study of physiological responses together with growth patterns will clarify how and to what extent root rot is able to damage the plant. A fully factorial experiment, including drought and Phytophtora cinnamomi Rands infection as factors, was carried out with Quercus ilex L. seedlings. Photosynthesis, biomass allocation and root traits were assessed. Photosynthetic variables responded differently to drought and infection over time. The root mass fraction showed a significant reduction due to infection. P. cinnamomi root rot altered the growth patterns. Plants could not recover from the physiological effects of infection only when the root rot coincided with water stress. Without additional stressors, the strategy of our seedlings in the face of root rot was to reduce the biomass increment and reallocate resources. Underlying mechanisms involved in plant-pathogen interactions should be considered in the study of holm oak decline, beyond the consideration of water stress as the primary cause of tree mortality.
Forest decline is nowadays a major challenge for ecosystem sustainability. Dehesas, which consists of savannah-like mediterranean ecosystems, are threatened by the holm oak decline in the south-west of Iberian peninsula. Phytophthora cinnamomi is considered the main agent of holm oak root rot, but little is known about the relationship between diversity of soilborne microbial community and the decline syndrome of holm oak. It would be hypothesized that the changes in the structure and functionality of the soil microbiome might influence tree health status through changes in richness and diversity of beneficial organisms such as mycorrhizal species, or fungal plant pathogens such as Fusarium spp. or Alternaria spp. total DNA of soil samples from declined oak dehesas was extracted and analyzed through metabarcoding techniques, to evaluate the specific composition and diversity of the fungal and oomycete communities and their relationship with the disease symptoms. the fungal community included a wide range of pathogens and abundance of ectomycorrhizal key taxa related with low defoliation degree. Phytophthora cinnamomi and Pythium spiculum did not appear among the most abundant oomycetes, nor were they related directly to defoliation levels. Moreover, a particular taxon belonging to the genus Trichoderma was strongly correlated with the scarcity of pathogenic Phytophthora spp. the diversity and composition of fungal and oomycete communities were related to the severity of the decline symptoms. the metabarcoding study of microbiome represents a powerful tool to develop biocontrol strategies for the management of the holm oak root rot.
Quercus ilex is one of the European forest species most susceptible to root rot caused by the oomycete Phytophthora cinnamomi. This disease contributes to holm oak decline, a particularly serious problem in the 'dehesas' ecosystem of the southwestern Iberian Peninsula. This work describes the host-pathogen interaction of Q. ilex and P. cinnamomi, using new infection indices at the tissue level. Fine roots of 6-month-old saplings inoculated with P. cinnamomi were examined by light microscopy and a random pool of images was analysed in order to calculate different indices based on the measured area of pathogen structures. In the early stages of invasion, P. cinnamomi colonizes the apoplast and penetrates cortical cells with somatic structures. On reaching the parenchymatous tissues of the central cylinder, the pathogen develops different reproductive and survival structures inside the cells and then expands through the vascular system of the root. Some host responses were identified, such as cell wall thickening, accumulation of phenolic compounds in the middle lamella of sclerenchyma tissues, and mucilage secretion blocking vascular cells. New insights into the behaviour of P. cinnamomi inside fine roots are described. Host responses fail due to rapid expansion of the pathogen and a change in its behaviour from biotrophic to necrotrophic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.