BACKGROUND:The growing number of patients on home mechanical ventilation has driven considerable progress in the performance and functionality of ventilators, with features comparable with those used in the ICU. However, a publication gap exists in the evaluation and comparison of their performance and each ventilator choice depends on machine characteristics defined by manufacturers. METHODS: We bench tested 8 home-care ventilators that are currently available: Monnal T50, EOVE EO-150, Puritan Bennet 560, Weinmann, PrismaVent 50, Trilogy Evo, Astral 150, and Vivo 60 by using an active lung model. These devices were tested under 18 experimental conditions that combined 3 variables: respiratory mechanics, ventilatory mode, and inspiratory muscle effort. The volume delivered, trigger response, pressurization capacity, and synchronization were analyzed. RESULTS: Significant differences were observed in the performance among the devices. Decreased inspiratory muscle effort caused changes in the delivered volume, which worsened the response-to-trigger time, pressurization capacity, and synchronization. Increased pressure support favored the development of asynchronies. All the ventilators developed asynchronies under at least 1 set of conditions, but the EOVE and Trilogy Evo ventilators showed the fewest asynchronies during the experimental conditions studied. CONCLUSIONS: Great variability in terms of technical performance was observed among the 8 home-care ventilators analyzed. Asynchronies became a major issue when home mechanical ventilation was used under higher pressure-support values and lower muscle efforts. Our results may prove to be useful in helping choose the best suited machine based on a patient's clinical therapy needs.
Background: Global pandemic due to COVID-19 has increased the interest for ventilators´ use worldwide. New devices have been developed and older ones have undergone a renewed interest, but we lack robust evidence about performance of each ventilator to match appropriate device to a given patient and care environment.Methods: The aim of this bench study was to investigate the performance of six devices for noninvasive ventilation, and to compare them in terms of volume delivered, trigger response, pressurization capacity and synchronization in volume assisted controlled and pressure support ventilation. All ventilators were tested under thirty-six experimental conditions by using the lung model ASL5000® (IngMar Medical, Pittsburgh, PA). Two leaks levels, two muscle inspiratory efforts and three mechanical patterns were combined for simulation. Trigger function was assessed by measurement of trigger-delay time. Pressurization capacity was evaluated as the net area under the pressure-time curve over the first 500 ms after inspiratory effort onset. Synchronization was evaluated by the asynchrony index and by the incidence and type of asynchronies in each condition. Results: All ventilators showed a good performance, even if pressurization capacity was worse than expected. Leak level did not affect their function. Differences were found during low muscle effort and obstructive pattern. In general, Philips EV300 and Hamilton C3 showed the best results.Conclusions: NIV devices successfully compensate air leaks but still underperform with low muscle effort and obstructive lungs. Clinicians´ must have a clear understanding of the goals of NIV both for devices´ choice and set main parameters to achieve therapy success.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.