A facile two‐step synthesis for branched poly(isoprene)s (PI) based on polyaddition of ABn‐type macromonomers is described. The synthesis of the macromonomers was achieved by anionic polymerization of isoprene and subsequent end‐capping of the polymers by addition of chlorodimethylsilane to the living carbanions. This led to PI‐based macromonomers with narrow polydispersity ($\overline M _{\rm w}$/$\overline M _{\rm n}$ < 1.15) and molecular weights in the range of 1 700 – 22 100 g · mol−1. Synthesis of the branched polymers was carried out by a hydrosilylation‐based polymerization of the macromonomers. Characterization via SEC, SEC‐MALLS, coupled SEC‐viscosimetry and 1H‐NMR‐spectroscopy supported the formation of branched structures. Interestingly, these branched polymers exhibited α‐values that were similar to those reported for hyperbranched polymers based on AB2‐monomers.
Front Cover: The cover image shows the facile twostep synthesis of branched poly(isoprene)s, based on the polyaddition of AB n -type macromonomers. The macromonomers were obtained by anionic polymerization of isoprene and subsequent end-capping with chlorodimethylsilane. Subsequent hydrosilylation leads to branched polyolefins.
The electrochemical characterization of three different polystyrene-b-polybutadiene block-copolymers, functionalized with diferrocenylsilane units, is reported. The PB-blocks have been functionalized with different fractions of electronically communicated, PS m -PB" p (HSiMeFc 2 ) p units, where m = 615, n = 53, p = 39 (1), m = 375, n = 92, p = 76 (2) and m = 455, n = 204, p = 170 (3). Electrochemical characterization has been carried out both in solution and after electrochemical deposition onto platinum electrodes. The bioelectrocatalytical properties of electrodes modified with the polymers in the nicotinamide dinucleotide (NADH) and glucose oxidase (GOx) oxidations have been investigated as a function of the constitution and structure of the polymers. The analytical properties of electrodes modified with these polymers as sensors of NADH and GOx are described. In addition, an amperometric biosensor for glucose, prepared by electrostatic immobilization of glucose oxidase onto a platinum electrode modified with one of the ferrocenyl block-copolymers as an example, has been developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.