The production of phosphoric acid from natural phosphate rock by means of the wet process gives rise to an industrial by-product named phosphogypsum (PG). About 5 tonnes of PG are generated per tonne of phosphoric acid production, and worldwide PG generation is estimated to be around 100-280 Mt per year. Most of this by-product is disposed of without any treatment, usually by dumping in large stockpiles. These are generally located in coastal areas close to phosphoric acid plants, where they occupy large land areas and cause serious environmental damage. PG is mainly composed of gypsum but also contains a high level of impurities such as phosphates, fluorides and sulphates, naturally occurring radionuclides, heavy metals, and other trace elements. All of this adds up to a negative environmental impact and many restrictions on PG applications. Up to 15% of world PG production is used to make building materials, as a soil amendment and as a set controller in the manufacture of Portland cement; uses that have been banned in most countries. The USEPA has classified PG as a "Technologically Enhanced Naturally Occurring Radioactive Material" (TENORM).This work reviews the different environmental impacts associated with PG storage and disposal. The methods described in the literature to minimise the negative effects of this waste are classified by treatment type, i.e. physical, chemical, thermal, etc., and different suggested applications for PG are detailed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.