Em um pomar jovem de laranjeiras Hamlin, não-irrigado, foi realizado um estudo que procurou investigar a potencialidade do uso de dados espectrais de árvores, visando ao gerenciamento localizado da produção de 52 árvores, distribuídas ao longo de duas transeções cruzadas, selecionadas para o levantamento da produção em dois ciclos sucessivos, 2000-2001 e 2001-2002. Imagens aéreas multiespectrais de alta resolução espacial foram tomadas de um pomar, em duas fases fenológicas distintas: antes e após a fase de desenvolvimento vegetativo. Os índices de vegetação NDVI e SAVI e os níveis de cinza nas faixas espectrais do vermelho e do infravermelho foram relacionados com a produção por meio de regressões. Os resultados mostraram que a resposta espectral apresentou relação significativa com a produção, embora os valores de r² tenham sido baixos. A tomada de imagens multiespectrais voltadas ao gerenciamento localizado da produção, tanto na época anterior, como posterior à fase de desenvolvimento vegetativo, apresentou desempenho semelhante quanto às relações entre resposta espectral e produção.
Em um pomar jovem de laranjeiras Hamlin, não-irrigado, foi realizado um estudo que procurou investigar a potencialidade da utilização de dados espaço-temporais de produção por árvore para o gerenciamento localizado. A produção de 1.471 árvores georreferenciadas foi levantada em dois ciclos sucessivos, 2000-2001 e 2001-2002, e classificada por meio de uma análise de agrupamentos via lógica fuzzy. Ainda, foi realizada uma análise de correlação intraclasse com dados de resposta espectral de 52 árvores, extraída de imagens aéreas multiespectrais de alta resolução espacial. Os resultados mostraram que foi possível a formação de classes distintas de comportamento produtivo, em função dos padrões de variabilidade espacial e temporal da produção. No entanto, as classes apresentaram baixa coerência espacial, o que dificulta o gerenciamento localizado da produção em nível de árvores individuais. A despeito disso, a resposta espectral esteve significativamente relacionada às classes formadas.
Villa Nova pelas sugestões e incentivo. Ao engenheiro agrônomo Márcio Frascino Müller de Almeida pela disponibilidade, sugestões, esclarecimentos e suporte técnico. Ao Sr. Nelson da Silva pela disponibilidade, esclarecimentos e ajuda. A Antonio Aparecido Ribeiro pelo incentivo e ajuda. A Antonio Aparecido Perin pelos esclarecimentos e ajuda.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.