Curcumin, a major active component of turmeric (Curcuma longa, L.), is known to have various effects on both healthy and cancerous tissues. In vitro studies suggest that curcumin inhibits cancer cell growth by activating apoptosis, but the mechanism underlying the anticancer effect of curcumin is still unclear. Since there is a recent consensus about endoplasmic reticulum (ER) stress being involved in the cytotoxicity of natural compounds, we have investigated using Image flow cytometry the mechanistic aspects of curcumin’s destabilization of the ER, but also the status of the lysosomal compartment. Curcumin induces ER stress, thereby causing an unfolded protein response and calcium release, which destabilizes the mitochondrial compartment and induce apoptosis. These events are also associated with secondary lysosomal membrane permeabilization that occurs later together with an activation of caspase-8, mediated by cathepsins and calpains that ended in the disruption of mitochondrial homeostasis. These two pathways of different intensities and momentum converge towards an amplification of cell death. In the present study, curcumin-induced autophagy failed to rescue all cells that underwent type II cell death following initial autophagic processes. However, a small number of cells were rescued (successful autophagy) to give rise to a novel proliferation phase.
These authors contributed equally.Curcumin, a major active component of turmeric (Curcuma longa, L.), is known to have various effects on both healthy and cancerous tissues. In vitro studies suggest that curcumin inhibits cancer cell growth by activating apoptosis, but the mechanism underlying the anticancer effects of curcumin is still unclear. Since there is a consensus about endoplasmic reticulum (ER) stress being involved in the cytotoxicity of many natural compounds, we investigated by Amnis ® Imaging flow cytometry the mechanistic aspects of curcumin's destabilization of the ER, but also the status of the lysosomal compartment involved in curcumin-associated apoptosis. Curcumin induces ER stress thereby causing an unfolded protein response (UPR) and calcium release which destabilize the mitochondrial compartment and induce apoptosis. These events are also associated with secondary lysosomal membrane permeabilization and activation of caspase-8, mediated by activation of cathepsins and calpains. We previously showed that sequence lead to the generation of truncated tBid and disruption of mitochondrial homeostasis. These two pathways of different intensities and momentum converge towards an amplification of cell death that still needs to be studied in more detail. It has been suggested that it may be possible to exploit autophagy for cancer therapy. There is a complex interplay involving early autophagy as soon as mitochondria produce superoxide anions and hydrogen peroxide. Treatments with 10 µM to 20 µM curcumin induce autophagosome formation, while only early events of cell death are detectable.In the present study, curcumin-induced autophagy failed to rescue all cells since most cells underwent type II cell death following initial autophagic processes. However, a small number of cells blocked in the cell cycle escaped and were rescued to give rise to a novel proliferation phase.
Curcumin | cell death | autophagy | apoptosis | ROS | Calcium | Stress | Mitochondria | Endoplasmic reticulum | cancer |
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.