Over the last two decades, pharmacogenetics and pharmacokinetics have been increasingly used in clinical practice in Psychiatry due to the high variability regarding response and side effects of antipsychotic drugs. Specifically, long-acting injectable (LAI) antipsychotics have different pharmacokinetic profile than oral formulations due to their sustained release characteristics. In addition, most of these drugs are metabolized by CYP2D6, whose interindividual genetic variability results in different metabolizer status and, consequently, into different plasma concentrations of the drugs. In this context, there is consistent evidence which supports the use of therapeutic drug monitoring (TDM) along with pharmacogenetic tests to improve safety and efficacy of antipsychotic pharmacotherapy. This comprehensive review aims to compile all the available pharmacokinetic and pharmacogenetic data regarding the three major LAI atypical antipsychotics: risperidone, paliperidone and aripiprazole. On the one hand, CYP2D6 metabolizer status influences the pharmacokinetics of LAI aripiprazole, but this relation remains a matter of debate for LAI risperidone and LAI paliperidone. On the other hand, developed population pharmacokinetic (popPK) models showed the influence of body weight or administration site on the pharmacokinetics of these LAI antipsychotics. The combination of pharmacogenetics and pharmacokinetics (including popPK models) leads to a personalized antipsychotic therapy. In this sense, the optimization of these treatments improves the benefit–risk balance and, consequently, patients’ quality of life.
Outpatient parenteral antimicrobial therapy (OPAT) with continuous infusion pumps is postulated as a very promising solution to treat complicated infections, such as endocarditis or osteomyelitis, that require patients to stay in hospital during extended periods of time, thus reducing their quality of life and increasing the risk of complications. However, stability studies of drugs in elastomeric devices are scarce, which limits their use in OPAT. Therefore, we evaluated the stability of ampicillin in sodium chloride 0.9% at two different concentrations, 50 and 15 mg/mL, in an elastomeric infusion pump when stored in the refrigerator and subsequently in real-life conditions at two different temperatures, 25 and 32 °C, with and without the use of a cooling device. The 15 mg/mL ampicillin is stable for up to 72 h under refrigeration, allowing subsequent dosing at 25 °C for 24 h with and without a cooling device, but at 32 °C its concentration drops below 90% after 8 h. In contrast, 50 mg/mL ampicillin only remains stable for the first 24 h under refrigeration, and subsequent administration at room temperature is not possible, even with the use of a cooling system. Our data support that 15 mg/mL AMP is suitable for use in OPAT if the volume and rate of infusion are tailored to the dosage needs of antimicrobial treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.