BackgroundBiclustering has been largely applied for the unsupervised analysis of biological data, being recognised today as a key technique to discover putative modules in both expression data (subsets of genes correlated in subsets of conditions) and network data (groups of coherently interconnected biological entities). However, given its computational complexity, only recent breakthroughs on pattern-based biclustering enabled efficient searches without the restrictions that state-of-the-art biclustering algorithms place on the structure and homogeneity of biclusters. As a result, pattern-based biclustering provides the unprecedented opportunity to discover non-trivial yet meaningful biological modules with putative functions, whose coherency and tolerance to noise can be tuned and made problem-specific.MethodsTo enable the effective use of pattern-based biclustering by the scientific community, we developed BicPAMS (Biclustering based on PAttern Mining Software), a software that: 1) makes available state-of-the-art pattern-based biclustering algorithms (BicPAM (Henriques and Madeira, Alg Mol Biol 9:27, 2014), BicNET (Henriques and Madeira, Alg Mol Biol 11:23, 2016), BicSPAM (Henriques and Madeira, BMC Bioinforma 15:130, 2014), BiC2PAM (Henriques and Madeira, Alg Mol Biol 11:1–30, 2016), BiP (Henriques and Madeira, IEEE/ACM Trans Comput Biol Bioinforma, 2015), DeBi (Serin and Vingron, AMB 6:1–12, 2011) and BiModule (Okada et al., IPSJ Trans Bioinf 48(SIG5):39–48, 2007)); 2) consistently integrates their dispersed contributions; 3) further explores additional accuracy and efficiency gains; and 4) makes available graphical and application programming interfaces.ResultsResults on both synthetic and real data confirm the relevance of BicPAMS for biological data analysis, highlighting its essential role for the discovery of putative modules with non-trivial yet biologically significant functions from expression and network data.ConclusionsBicPAMS is the first biclustering tool offering the possibility to: 1) parametrically customize the structure, coherency and quality of biclusters; 2) analyze large-scale biological networks; and 3) tackle the restrictive assumptions placed by state-of-the-art biclustering algorithms. These contributions are shown to be key for an adequate, complete and user-assisted unsupervised analysis of biological data.SoftwareBicPAMS and its tutorial available in http://www.bicpams.com.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-017-1493-3) contains supplementary material, which is available to authorized users.
BackgroundPredicting progression from Mild Cognitive Impairment (MCI) to Alzheimer’s Disease (AD) is an utmost open issue in AD-related research. Neuropsychological assessment has proven to be useful in identifying MCI patients who are likely to convert to dementia. However, the large battery of neuropsychological tests (NPTs) performed in clinical practice and the limited number of training examples are challenge to machine learning when learning prognostic models. In this context, it is paramount to pursue approaches that effectively seek for reduced sets of relevant features. Subsets of NPTs from which prognostic models can be learnt should not only be good predictors, but also stable, promoting generalizable and explainable models.MethodsWe propose a feature selection (FS) ensemble combining stability and predictability to choose the most relevant NPTs for prognostic prediction in AD. First, we combine the outcome of multiple (filter and embedded) FS methods. Then, we use a wrapper-based approach optimizing both stability and predictability to compute the number of selected features. We use two large prospective studies (ADNI and the Portuguese Cognitive Complaints Cohort, CCC) to evaluate the approach and assess the predictive value of a large number of NPTs.ResultsThe best subsets of features include approximately 30 and 20 (from the original 79 and 40) features, for ADNI and CCC data, respectively, yielding stability above 0.89 and 0.95, and AUC above 0.87 and 0.82. Most NPTs learnt using the proposed feature selection ensemble have been identified in the literature as strong predictors of conversion from MCI to AD.ConclusionsThe FS ensemble approach was able to 1) identify subsets of stable and relevant predictors from a consensus of multiple FS methods using baseline NPTs and 2) learn reliable prognostic models of conversion from MCI to AD using these subsets of features. The machine learning models learnt from these features outperformed the models trained without FS and achieved competitive results when compared to commonly used FS algorithms. Furthermore, the selected features are derived from a consensus of methods thus being more robust, while releasing users from choosing the most appropriate FS method to be used in their classification task.Electronic supplementary materialThe online version of this article (10.1186/s12911-018-0710-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.