This paper proposes a method to combine reinforcement learning (RL) and imitation learning (IL) using a dynamic, performance-based modulation over learning signals.The proposed method combines RL and behavioral cloning (IL), or corrective feedback in the action space (interactive IL/IIL), by dynamically weighting the losses to be optimized, taking into account both the backpropagated gradients used to update the policy and the agent's estimated performance. In this manner, RL and IL/IIL losses are combined by equalizing their impact on the policy's updates, while simultaneously modulating said impact in such a way that imitation learning signals are prioritized at the beginning of the learning process, and as the agent's performance improves, the reinforcement learning signals become progressively more relevant, allowing for a smooth transition from pure IL/IIL to pure RL. The proposed method is used to learn local planning policies for mobile robots, synthesizing IL/IIL signals online by means of a scripted policy. An extensive evaluation of the application of the proposed method to this task is performed in simulations, and it is empirically shown that it outperforms pure RL in terms of sample efficiency (achieving the same level of performance in the training environment utilizing approximately 4 times less experiences), while consistently producing local planning policies with better performance metrics (achieving an average success rate of 0.959 in an evaluation environment, outperforming pure RL by 12.5% and pure IL by 13.9%). Furthermore, the obtained local planning policies are successfully deployed in the real world without performing any major fine tuning. The proposed method can extend existing RL algorithms, and is applicable to other problems for which generating IL/IIL signals online is feasible. A video summarizing some of the real world experiments that were conducted can be found in https://youtu.be/mZlaXn9WGzw.
The goal of this paper is to propose a vision system for humanoid robotic soccer that does not use any color information. The main features of this system are: (i) real-time operation in the NAO robot, and (ii) the ability to detect the ball, the robots, their orientations, the lines and key field features robustly. Our ball detector, robot detector, and robot's orientation detector obtain the highest reported detection rates. The proposed vision system is tested in a SPL field with several NAO robots under realistic and highly demanding conditions. The obtained results are: robot detection rate of 94.90%, ball detection rate of 97.10%, and a completely perceived orientation rate of 99.88% when the observed robot is static, and 95.52% when the observed robot is moving.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.