Microbial desalination cell (MDC) is a bioelectrochemical system capable of oxidizing organics, generating electricity, while reducing the salinity content of brine streams. As it is designed, anion and cation exchange membranes play an important role on the selective removal of ions from the desalination chamber. In this work, sulfonated sodium (Na) poly(ether ether ketone) (SPEEK) cation exchange membranes (CEM) were tested in combination with quaternary ammonium chloride poly(2,6-dimethyl 1,4-phenylene oxide) (QAPPO) anion exchange membrane (AEM). Non-patterned and patterned (varying topographical features) CEMs were investigated and assessed in this work. The results were contrasted against a commercially available CEM. This work used real seawater from the Pacific Ocean in the desalination chamber. The results displayed a high desalination rate and power generation for all the membranes, with a maximum of 78.6±2.0% in salinity reduction and 235±7mWm in power generation for the MDCs with the SPEEK CEM. Desalination rate and power generation achieved are higher with synthesized SPEEK membranes when compared with an available commercial CEM. An optimized combination of these types of membranes substantially improves the performances of MDC, making the system more suitable for real applications.
Quaternary ammonium poly(2,6-dimethyl 1,4-phenylene oxide) (QAPPO) anion exchange membranes (AEMs) with topographically patterned surfaces were assessed in a microbial desalination cell (MDC) system. The MDC results with these QAPPO AEMs were benchmarked against a commercially available AEM. The MDC with the non-patterned QAPPO AEM (Q1) displayed the best desalination rate (a reduction of salinity by 53 ± 2.7%) and power generation (189 ± 5 mW m
− 2
) when compared against the commercially available AEM and the patterned AEMs. The enhanced performance with the Q1 AEM was attributed to its higher ionic conductivity and smaller thickness leading to a reduced area specific resistance. It is important to note that Real Pacific Ocean seawater and activated sludge were used into the desalination chamber and anode chamber respectively for the MDC – which mimicked realistic conditions. Although the non-patterned QAPPO AEM displayed better performance over the patterned QAPPO AEMs, it was observed that the anodic overpotential was smaller when the MDCs featured QAPPO AEMs with larger lateral feature sizes. The results from this study have important implications for the continuous improvements necessary for developing cheaper and better performing membranes in order to optimize the MDC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.