Power quality and energy consumption measurements support providers and energy users with solutions for acquiring and reporting information about the energy supply for residential, commercial, and industrial sectors. In particular, since the average number of electronic devices in homes increases year by year and their sensitivity is very high, it is not only important to monitor the total energy consumption, but also the quality of the power supplied. However, in practice, end-users do not have information about the energy consumption in real-time nor about the quality of the power they receive, because electric energy meters are too expensive and complex to be handled. In order to overcome these inconveniences, an innovative, open source, low-cost, precise, and reliable power and electric energy meter is presented that can be easily installed and managed by any inexperienced user at their own home in urban or rural areas. The system was validated in a real house over a period of two weeks, showing interesting results and findings which validate our proposal.
An important challenge for our society is the transformation of traditional power systems to a decentralized model based on renewable energy sources. In this new scenario, advanced devices are needed for real-time monitoring and control of the energy flow and power quality (PQ). Ideally, the data collected by Internet of Thing (IoT) sensors should be shared to central cloud systems for online and off-line analysis. In this paper openZmeter (oZm) is presented as an advanced low-cost and open-source hardware device for high-precision energy and power quality measurement in low-voltage power systems. An analog front end (AFE) stage is designed and developed for the acquisition, conditioning, and processing of power signals. This AFE can be stacked on available quadcore embedded ARM boards. The proposed hardware is capable of adapting voltage signals up to 800 V AC/DC and currents up to thousands of amperes using different probes. The oZm device is described as a fully autonomous open-source system for the computation and visualization of PQ events and consumed/generated energy, along with full details of its hardware implementation. It also has the ability to send data to central cloud management systems. Given the small size of the hardware design and considering that it allows measurements under a wide range of operating conditions, oZm can be used both as bulk metering or as metering/submetering device for individual appliances. The design is released as open hardware and therefore is presented to the community as a powerful tool for general usage.
To progress on the practical issues of molecular weight prediction via diffusion NMR, the first log(Dη) vs. log(Mw) calibration curve is provided, allowing the easy and fast determination of weight-average molecular weights with no matter of the solvent used.
We present herein the application of a lithium anthraquinoid in the catalytic synthesis of cyclic PLA, showing that the aggregation plays a critical role in cyclic vs. linear selectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.