Dung beetles relocate vertebrate feces under the soil surface, and this behavior has many ecological consequences. In tropical forests, for example, seeds defecated by mammals that are subsequently buried by dung beetles are less likely to suffer predation. While the effects of dung beetles on the fate of defecated seeds have been relatively well studied, their effect on seeds already buried in the soil has not. To contribute to fill this gap, we designed a study with three objectives: (a) Describe the vertical re-distribution of soil seeds that occurs due to dung beetle activity; (b) Determine if beetle activity favors establishment of seedlings from the soil seed bank; and (c) Determine if the effect of dung beetles is stronger in sites of recurrent mammal defecation. We carried out three complementary field experiments, one with artificial seeds (plastic beads) of three sizes buried at known depths, one with two species of seeds buried at those same depths, and one with the natural soil seed bank in sites of single vs. recurrent defecation. Buried beads were moved by dung beetles along the vertical axis, both upwards (9.5%) and downwards (11.5%); smaller beads were more frequently moved downwards while the contrary occurred for larger beads. Dung beetle activity caused an increase in seedling establishment, both from experimentally buried seeds and from the natural seed bank. Defecation recurrence had no effect on seedling establishment. We conclude that dung beetle activity affects seed bank dynamics with important consequences for seedling establishment in tropical forests.Abstract in Spanish is available with online material.
Dung beetles are secondary seed dispersers, incidentally moving many of the seeds defecated by mammals vertically (seed burial) and/or horizontally as they process and relocate dung. Although several studies have quantified this ecological function of dung beetles, very few have followed seed fate until seedling establishment, and most of these have focused on the effects of seed burial. We know very little about the effects of horizontal seed movement by dung beetles, though it is generally assumed that it will affect plant recruitment positively through diminishing seed clumping. The objective of our study was to assess the effects of dung beetle activity on the spatial distribution of seeds and seedlings, and on the probability of seedling establishment. In a tropical rainforest in Mexico we carried out two complementary field experiments for each of two tree species (Bursera simaruba and Poulsenia armata), using seeds experimentally imbedded in pig dung and recording their fate and spatial location over time. For both species, dung beetle activity reduced the spatial clumping of seeds and seedlings; however, it did not increase the probability of seedling establishment. We discuss the context- and species-specificity of the combined effects of horizontal and vertical dispersal of seeds by dung beetles, and the need to quantify long-term seedling fates to more accurately determine the effects of seed movement by dung beetles on plant recruitment.
Forests that regrow naturally on abandoned fields are important for restoring biodiversity and ecosystem services, but can they also preserve the distinct regional tree floras? Using the floristic composition of 1215 early successional forests (≤20 years) in 75 human-modified landscapes across the Neotropic realm, we identified 14 distinct floristic groups, with a between-group dissimilarity of 0.97. Floristic groups were associated with location, bioregions, soil pH, temperature seasonality, and water availability. Hence, there is large continental-scale variation in the species composition of early successional forests, which is mainly associated with biogeographic and environmental factors but not with human disturbance indicators. This floristic distinctiveness is partially driven by regionally restricted species belonging to widespread genera. Early secondary forests contribute therefore to restoring and conserving the distinctiveness of bioregions across the Neotropical realm, and forest restoration initiatives should use local species to assure that these distinct floras are maintained.
The current global pollinator crisis highlights the need to investigate the diversity and distribution of ecologically and socially relevant taxa such as tropical stingless bees.We analyzed the diversity and composition of stingless bee (Meliponini) communities at a regional scale in west-central Mexico using an extensive direct search along an altitudinal gradient encompassing different climate and vegetation types. Our hypothesis was that meliponine bee diversity would be greater in tropical warmer. We found a total of 14 meliponine bee species, including two new records for the region. We identified three types of bee assemblages: one in hot lowland climates with tropical dry forest vegetation, one in temperate highland climates with mixed oak-pine forest vegetation, and one in the warm ecotone with mixed subdeciduous forest vegetation between the hot and temperate zones. As expected, the lowland assemblage in the tropical dry forest vegetation had the greatest diversity (11 species). In the warm ecotone, meliponine species from temperate highlands and hot lowland habitats converged; this region should therefore be considered a high conservation priority area.Fifty percent of the meliponine bees found are endemic and have a very low incidence, suggesting that their populations may be endangered. Given the extensive and ongoing change of land use to avocado plantations in the warm ecotone and temperate highlands with mixed oak-pine forest vegetation cover, specific conservation plans should be generated to conserve the natural ecosystems and this important native pollinator group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.