Ground-penetrating radar (GPR) has been widely used in investigations of contaminated areas because of its sensitivity to variations associated with the nature of pore fluids. However, most of the studies were usually based on the visual interpretation of radargrams or on a time domain amplitude analysis. In this work, we propose a methodology that consists of analyzing the spectral content of the signal recorded in multi-frequency 3D GPR profiles. A remarkable advantage of this type of antenna is its step-frequency system, which provides a much wider emission spectrum than the one corresponding to conventional single-frequency antennas. From the data in the frequency domain, the dominant frequency and bandwidth were calculated as parameters whose variation could be related to the presence of light non-aqueous phase liquid (LNAPL) in the subsurface. By analyzing the variations of these two parameters simultaneously, we were able to delimit the contaminated zones in a case study, associating them with a significant shift of the frequency spectrum with respect to the average of the study area. Finally, as a validation method of the proposed methodology, the results of the frequency analysis were compared with resistivity data obtained with an electromagnetic conductivity meter, showing a very good correlation between the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.