The canine transmissible venereal tumor (CTVT) is a cancer lineage that arose several millennia ago and survives by “metastasizing” between hosts through cell transfer. The somatic mutations in this cancer record its phylogeography and evolutionary history. We constructed a time-resolved phylogeny from 546 CTVT exomes and describe the lineage’s worldwide expansion. Examining variation in mutational exposure, we identify a highly context-specific mutational process that operated early in the cancer’s evolution but subsequently vanished, correlate ultraviolet-light mutagenesis with tumor latitude, and describe tumors with heritable hyperactivity of an endogenous mutational process. CTVT displays little evidence of ongoing positive selection, and negative selection is detectable only in essential genes. We illustrate how long-lived clonal organisms capture changing mutagenic environments, and reveal that neutral genetic drift is the dominant feature of long-term cancer evolution.
Autonomous replication and segregation of mitochondrial DNA (mtDNA) creates the potential for evolutionary conflict driven by emergence of haplotypes under positive selection for 'selfish' traits, such as replicative advantage. However, few cases of this phenomenon arising within natural populations have been described. Here, we survey the frequency of mtDNA horizontal transfer within the canine transmissible venereal tumour (CTVT), a contagious cancer clone that occasionally acquires mtDNA from its hosts. Remarkably, one canine mtDNA haplotype, A1d1a, has repeatedly and recently colonised CTVT cells, recurrently replacing incumbent CTVT haplotypes. An A1d1a control region polymorphism predicted to influence transcription is fixed in the products of an A1d1a recombination event and occurs somatically on other CTVT mtDNA backgrounds. We present a model whereby 'selfish' positive selection acting on a regulatory variant drives repeated fixation of A1d1a within CTVT cells.
BackgroundCanine transmissible venereal tumors (CTVTs) generally have different cytomorphologic subtypes and phases of progression. Some tumors have variable biologic behavior including a progressive increase in tumor aggressiveness and variable responses to chemotherapy. This behavior is partially due to high p‐glycoprotein expression by tumor cells, which leads to the expulsion of chemotherapeutic drugs. Other possible causes include changes in pro‐ and anti‐apoptotic genes from the BCL‐2 family and DNA repair systems, which are associated with the p53 gene family.ObjectivesWe aimed to determine the relative expression of the multi‐drug resistance 1 (MDR1), p53, b‐cell lymphoma 2 (BCL2), and bcl 2‐associated X (BAX) genes in CTVT before and after therapy and establish a relationship with treatment responses, cytomorphologic patterns, and tumor progression identified with histopathology.MethodsRT‐qPCR was performed on 21 CTVT tumor samples before and after initiating chemotherapy to determine specific gene expression. Normal canine testicular tissue was used as a negative control for all experiments.ResultsMDR1 expression was decreased before and after initiating vincristine therapy in CTVT tumor tissues compared with normal canine testicular tissue; p53 and BAX were overexpressed at both time points compared with normal tissue, and no statistical differences were seen between the different morphologic types. However, BAX expression was decreased in the group with quick therapeutic responses but was still overexpressed compared with normal testicular tissue. In the group with the slowest chemotherapeutic responses, BCL2 was overexpressed.ConclusionThe findings of this study showed a relative increase in MDR1 gene expression in response to chemotherapy and higher expression in plasmacytoid CTVTs compared with the other cytomorphologic patterns. BCL2 overexpression was related to a favorable prognosis, and p53, BAX, and BCL2 were expressed independent of the cytomorphologic CTVT type. All of the genes were expressed independent of tumor progression, as noted on histopathology.
Porcine circovirus 2 (PCV2) is an icosahedral, non-enveloped, and single-stranded circular DNA virus that belongs to the family Circoviridae, genus Circovirus, and is responsible for a complex of different diseases defined as porcine circovirus diseases (PCVDs). These diseases - including postweaning multisystemic wasting syndrome (PMWS), enteric disease, respiratory disease, porcine dermatitis and nephropathy syndrome (PDNS), and reproductive failure - are responsible for large economic losses in the pig industry. After serial passages in swine testicle (ST) cells of a wild-type virus isolated from an animal with PMWS, we identified three PCV2b viruses with capsid protein (known as Cap protein) cumulative mutations, including two novel mutants. The mutant viruses were introduced into new ST cell cultures for reisolation and showed, in comparison to the wild-type PCV2b, remarkable viral replication efficiency (> 10 DNA copies/ml) and cell death via necrosis, which were clearly related to the accretion of capsid protein mutations. The analysis of a Cap protein/capsid model showed that the mutated residues were located in solvent-accessible positions on the external PCV2b surface. Additionally, the mutated residues were found in linear epitopes and participated in pockets on the capsid surface, indicating that these residues could also be involved in antibody recognition. Taking into account the likely natural emergence of PCV2b variants, it is possible to consider that the results of this work increase knowledge of Circovirus biology and could help to prevent future serious cases of vaccine failure that could lead to heavy losses to the swine industry.
Revista Colombiana de Ciencias Pecuarias Original articles Distribution and prevalence of transmissible venereal tumor in the Colombian canine population ¤ Distribución y prevalencia de tumor venéreo transmisible en la población canina colombiana Distribuição e prevalência do tumor venéreo transmissível na população canina colombiana
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.