A novel strategy to control the generation of singlet oxygen by a photosensitizer using cucurbit[n]urils inclusion complexes is shown herein, and the strategy has great potential for therapeutic applications. We show the basic requirements of the photosensitizer complexes in order to develop an on−off switch for singlet oxygen that is reversible using competitive binding. The supramolecular strategy proposed in this paper avoids complex synthetic schemes in order to activate or deactivate the photosensitizer as previous work has shown and supports the use of biocompatible materials. Mechanistic insights into the control over the generation of singlet oxygen are provided, which strongly emphasize the key role of the cucurbit[n]uril macrocycles in the stabilization or deactivation of the triplet excited state.
Cucurbit[n]urils (CB[n]s) have emerged as potential candidates for drug delivery in several areas due to their strong binding interactions and low toxicity. More recently, their benefits for a type of cancer treatment termed Photodynamic Therapy (PDT) have been recognized. The outcomes of this therapy rely on better drug delivery strategies and improving overall photoactivity of the drugs, which is where CB[n]s could have a strong impact. The effects of these molecular containers on photoactivity are discussed and new interesting work is highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.