Resumo Analisa-se a aplicabilidade dos índices clássicos, numericamente modelados, indicadores de condições atmosféricas turbulenta para previsão de turbulência de céu claro (CAT) na região sul do Brasil. Os eventos foram reconstruídos usando 25.465 mensagens de CAT, denominado de AIREP (Air-Report), de 2015 a 2019, e 12.959 observações in-situ da aceleração vertical da gravidade (VRTG) registrados pelas aeronaves de fevereiro de 2018 a dezembro de 2019. Os registros de CAT via VRTG mostraram que os eventos turbulentos são proporcionalmente distribuídos (em parênteses a sua severidade) em 94% (leve), 4% (moderada) e 1% (severa) na região de estudo. As análises sinóticas de 5 estudos de casos revelam que os eventos de CAT ocorreram durante condições de céu claro na presença da corrente de jato e, assim, o cisalhamento de vento foi o mecanismo de sua formação. Três análises, baseada na composição de variáveis modelados pelos modelos GFS0,25 e WRF (com grade de 18, 6 e 2 km), definido como, (1) perfil de vento, temperatura potencial (θ), energia cinética turbulenta (TKE), (2) número de Richardson (Ri) e velocidade vertical (W), e (3) os índices indicadores de CAT denominados de Ri, Brown, Ellrod-Endlich, Ellrod-Knap and Ellroad-Knox, mostraram que quanto maior a resolução espacial da simulação numérica melhor é previsão de CAT. Análises da resposta dos índices modelados versus capacidade destes em representar as condições de uma atmosfera turbulenta, na circunvizinhança dos registros de VRTG, é calculada e se observou que o índice Brown foi o mais eficiente para tal, uma que este foi capaz de identificar 100% dos cinco casos estudados. O resultado de tentativa inicial para ajustar os índices (Brown, Ellrod-Endlich e Ellrod-Knap) de previsão de CAT, usando dados modelados do WRF são bastante promissores, visto que os três índices ajustados foram capazes de detectar, respectivamente, 96%, 96% e 99% da previsão de eventos de CAT, com 12 horas de antecedência nos dias 21 de maio de 2018 e 27 de março de 2019.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.