This paper presents an efficient cyberphysical platform for the smart management of smart territories. It is efficient because it facilitates the implementation of data acquisition and data management methods, as well as data representation and dashboard configuration. The platform allows for the use of any type of data source, ranging from the measurements of a multi-functional IoT sensing devices to relational and non-relational databases. It is also smart because it incorporates a complete artificial intelligence suit for data analysis; it includes techniques for data classification, clustering, forecasting, optimization, visualization, etc. It is also compatible with the edge computing concept, allowing for the distribution of intelligence and the use of intelligent sensors. The concept of smart cities is evolving and adapting to new applications; the trend to create intelligent neighbourhoods, districts or territories is becoming increasingly popular, as opposed to the previous approach of managing an entire megacity. In this paper, the platform is presented, and its architecture and functionalities are described. Moreover, its operation has been validated in a case study where the bike renting service of Paris—Vélib’ Métropole has been managed. This platform could enable smart territories to develop adapted knowledge management systems, adapt them to new requirements and to use multiple types of data, and execute efficient computational and artificial intelligence algorithms. The platform optimizes the decisions taken by human experts through explainable artificial intelligence models that obtain data from IoT sensors, databases, the Internet, etc. The global intelligence of the platform could potentially coordinate its decision-making processes with intelligent nodes installed in the edge, which would use the most advanced data processing techniques.
COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has a case-fatality rate of 2–3%, with higher rates among elderly patients and patients with comorbidities. Radiologically, COVID-19 is characterised by multifocal ground-glass opacities, even for patients with mild disease. Clinically, patients with COVID-19 present respiratory symptoms, which are very similar to other respiratory virus infections. Our knowledge regarding the SARS-CoV-2 virus is still very limited. These facts make it vitally important to establish mechanisms that allow to model and predict the evolution of the virus and to analyze the spread of cases under different circumstances. The objective of this article is to present a model developed for the evolution of COVID in the city of Manizales, capital of the Department of Caldas, Colombia, focusing on the methodology used to allow its application to other cases, as well as on the monitoring tools developed for this purpose. This methodology is based on a hybrid model which combines the population dynamics of the SIR model of differential equations with extrapolations based on recurrent neural networks. This combination provides self-explanatory results in terms of a coefficient that fluctuates with the restraint measures, which may be further refined by expert rules that capture the expected changes in such measures.
In electric vehicles and mobile electronic devices, batteries are one of the most critical components. They work by using electrochemical reactions that have been thoroughly investigated to identify their behavior and characteristics at each operating point. One of the fascinating aspects of batteries is their complicated behavior. The type of power cell reviewed in this study is a Lithium Iron Phosphate LiFePO4 (LFP). The goal of this study is to develop an intelligent model that can forecast the power cell State of Charge (SOC). The dataset used to create the model comprises all the operating points measured from an actual system during a capacity confirmation test. Regression approaches based on Deep Learning (DL), such as Long Short-Term Memory networks (LSTM), were evaluated under different model configurations and forecasting horizons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.