This study aims to evaluate the efficacy of two methods (agitation and ultra-sound) for extracting phenolic compounds from 15 native plants. Plant species collected in the Dehesa of Extremadura were used. The antioxidant, antihypertensive and antimicrobial activity of the phenolic extracts was investigated. Significantly different results were obtained when comparing the two extraction methods, with the highest concentrations of phenolic compounds found for ultrasound extraction. In addition, the extracts obtained for Cistus albidus, Cistus salviifolius, Rubus ulmifolius and Quercus ilex showed the highest concentrations of phenolic compounds. The antioxidant activity was higher in the extracts of Cistus and Q. ilex obtained by ultrasound, as was the antihypertensive activity. Antimicrobial activity was also higher in the extracts obtained by ultrasound from C. salviifolius and Q. ilex plants against bacteria and from Cistus ladanifer against yeasts. Therefore, it can be concluded that, with the ultrasound extraction of phenolic compounds from C. ladanifer, C. albidus and Q. ilex plants, it is possible to obtain extracts with important functional properties, so they could be studied for their use in food with the aim of obtaining healthy and safe products, favouring the sustainability of the environment of the Dehesa Extremeña.
The aim of this work was to determine the antimicrobial activity of the essential oils of six plants widely distributed in the Dehesa of Extremadura, such as Calendula officinalis, Cistus ladanifer, Cistus salviifolius, Cistus multiflorus, Lavandula stoechas, and Rosmarinus officinalis. The content of total phenolic compounds (TPC) and the antimicrobial activity of the essential oils against pathogenic and spoilage bacteria and yeasts as well as aflatoxin-producing molds were determined. A great variability was observed in the composition of the essential oils obtained from the six aromatic plants. The Cistus ladanifer essential oil had the highest content of total phenols (287.32 ppm), followed by the Cistus salviifolius essential oil; and the Rosmarinus officinalis essential oil showed the lowest amount of these compounds. The essential oils showed inhibitory effects on the tested bacteria and also yeasts, showing a maximum inhibition diameter of 11.50 mm for Salmonella choleraesuis and Kregervanrija fluxuum in the case of Cistus ladanifer and a maximum diameter of 9 mm for Bacillus cereus and 9.50 mm for Priceomyces carsonii in the case of Cistus salviifolius. The results stated that antibacterial and antiyeast activity is influenced by the concentration and the plant material used for essential oil preparation. In molds, aflatoxin production was inhibited by all the essential oils, especially the essential oils of Cistus ladanifer and Cistus salviifolius. Therefore, it can be concluded that the essential oils of native plants have significant antimicrobial properties against pathogenic and spoilage microorganisms, so they could be studied for their use in the industry as they are cheap, available, and non-toxic plants that favor the sustainability of the environment of the Dehesa of Extremeña.
This study identified the compounds obtained from four native Dehesa plants, which were holm oak, elm, blackberry and white rockrose, and evaluated their ability to inhibit the growth and production of aflatoxins B1 and B2 of two strains of mycotoxigenic Aspergillus flavus. For this purpose, phenolic compounds present in the leaves and flowers of the plants were extracted and identified, and subsequently, the effect on the growth of A. flavus, aflatoxin production and the expression of a gene related to its synthesis were studied. Cistus albidus was the plant with the highest concentration of phenolic compounds, followed by Quercus ilex. Phenolic acids and flavonoids were mainly identified, and there was great variability among plant extracts in terms of the type and quantity of compounds. Concentrated and diluted extracts were used for each individual plant. The influence on mold growth was not very significant for any of the extracts. However, those obtained from plants of the genus Quercus ilex, followed by Ulmus sp., were very useful for inhibiting the production of aflatoxin B1 and B2 produced by the two strains of A. flavus. Expression studies of the gene involved in the aflatoxin synthesis pathway did not prove to be effective. The results indicated that using these new natural antifungal compounds from the Dehesa for aflatoxin production inhibition would be desirable, promoting respect for the environment by avoiding the use of chemical fungicides. However, further studies are needed to determine whether the specific phenolic compounds responsible for the antifungal activity of Quercus ilex and Ulmus sp. produce the antifungal activity in pure form, as well as to verify the action mechanism of these compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.