Photochemical electrocyclization of poly(phenylacetylene)s (PPAs) is used for the structural elucidation of apolyene backbone.This method not only allows classification of PPAs in cis-cisoidal (w 1 < 908 8)o rc is-transoidal structures (w 1 > 908 8), but also approximating w 1 .APPAs olution is illuminated with visible light and monitoring the photochemical electrocyclization of the PPAhelix by measuring the ECD spectra at different times.P PAsw ith ac is-cisoidal structure show ar eduction of the ECD signal of at least 50 %b efore 30 min of irradiation, while cis-transoidal helices need much longer time because the transoidal bond must be isomerized. The different cis-cisoidal and cis-transoidal helices require different times to decrease their ECD signal by 50 %(t 1/2), depending on the degree of compression or stretching of the helix, establishing ar elationship between the secondary structure adopted by PPA(w 1)a nd the time required to lose the ECD vinylic signal by light irradiation.
Helical polymers such as poly(phenylacetylene)s (PPAs) are interesting materials due to the possibility of tuning their helical scaffold (sense and elongation) once they have been prepared and by the presence of external stimuli. The main limitation in the application of PPAs is their poor photostability. These polymers degrade under visible light exposure through a photochemical electrocyclization process. In this work, it was demonstrated, through a selected example, how the photochemical degradation in PPAs is directly related to their dynamic helical behavior. Thus, while PPAs with dynamic helical structures show poor photostability under UV/Vis light exposure, poly‐(R)‐1, bearing an enantiopure sulfoxide group as pendant group and designed to have a quasi‐static helical behavior, shows a large photostability due to the restricted conformational composition at the polyene backbone, needed to orient the conjugated double bonds prior to the photochemical electrocyclization process and the subsequent degradation of the material.
Supramolecular and covalent polymers share multiple structural effects such as communication mechanisms among monomer repeating units, which are related to their axial helical structure. Herein, a unique multi-helical material combining information from both metallosupramolecular and covalent helical polymers is presented. In this system, the helical structure described by the poly(acetylene) (PA) backbone (cis-cisoidal, cis-transoidal) guides the pendant groups in a fashion where a tilting degree emerges between a pendant and the adjacent ones. As a result, a multi-chiral material is formed comprising four or five axial motifs when the polyene skeleton adopts either a cis-transoidal or cis-cisoidal configuration: the two coaxial helices—internal and external—and the two or three chiral axial motifs described by the bispyridyldichlorido PtII complex array. These results show that complex multi-chiral materials can be obtained by polymerizing appropriate monomers that combine both point chirality and the ability to generate chiral supramolecular assemblies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.