The development and implementation of artificial intelligence (AI) applications in health care contexts is a concurrent research and management question. Especially for hospitals, the expectations regarding improved efficiency and effectiveness by the introduction of novel AI applications are huge. However, experiences with real-life AI use cases are still scarce. As a first step towards structuring and comparing such experiences, this paper is presenting a comparative approach from nine European hospitals and eleven different use cases with possible application areas and benefits of hospital AI technologies. This is structured as a current review and opinion article from a diverse range of researchers and health care professionals. This contributes to important improvement options also for pandemic crises challenges, e.g., the current COVID-19 situation. The expected advantages as well as challenges regarding data protection, privacy, or human acceptance are reported. Altogether, the diversity of application cases is a core characteristic of AI applications in hospitals, and this requires a specific approach for successful implementation in the health care sector. This can include specialized solutions for hospitals regarding human–computer interaction, data management, and communication in AI implementation projects.
Co-designing an mHealth app for the collection of patient-reported outcomes in frail patients
Environmental justice has been a relevant object of analysis in recent decades. The generation of patterns in the spatial distribution of urban trees has been a widely addressed issue in the literature. However, the spatial distribution of monumental trees still constitutes an unknown object of study. The aim of this paper was to analyse the spatial distribution of the monumental-tree heritage in the city of Valencia, using Exploratory Spatial Data Analysis (ESDA) methods, in relation to different population groups and to discuss some implications in terms of environmental justice, from the public-policy perspective. The results show that monumental trees are spatially concentrated in high-income neighbourhoods, and this fact represents an indicator of environmental inequality. This diagnosis can provide support for decision-making on this matter.
The urban spatial distribution of public housing is not a widely addressed issue in Spain, from a geographical perspective. This paper analyses the spatial distribution of public housing in the city of Valencia (Spain), as well as to identify its relationship with other socio-residential characteristics of the urban environment. Different techniques of spatial point pattern analysis, exploratory spatial data analysis (ESDA) and clustering methods are implemented. We analyse both the univariate spatial patterns of public housing and its relationship with two variables: a low-income population and median monthly rent. Analysis has revealed that public housing follows a pattern of partial agglomeration and mostly peripheral dispersion in its spatial distribution. However, there does not seem to be a univocal and immanent relationship between such distribution patterns and the characteristics of the socio-residential environment. Conversely, it is possible to point to the existence of multiple local forms of association. The lack of a clear pattern may be due to many reasons: the heterogeneity of profiles eligible for public housing, the size of the projects and the spatial dispersion in their location.
El nuevo Espacio Europeo de Educación ha supuesto la incorporación de nuevas metodologías y dinámicas digitales en entornos formales como el ámbito universitario, motivando al alumnado a involucrarse en sus procesos de aprendizaje colaborativo dentro del aula. A través de la asignatura Investigación en Sistemas de Bienestar Social del grado de Trabajo Social de la Universitat de València se ha llevado a cabo un proyecto de innovación docente, financiado por dicha universidad, con el objetivo de mejorar la docencia a través del uso de las redes sociales para la construcción e intercambio de conocimiento superior en materia de investigación. Concretamente, se ha co-diseñado junto al alumnado un blog grupal didáctico de acceso libre, “Investiblog”, que permite el uso colectivo de un espacio virtual de encuentro, que contribuye a estrechar la brecha digital debido a su bajo coste y sencillez de uso. El proyecto se ha implementado en el curso académico 2019-2020, en tres grupos de tercer curso, con un total de 124 estudiantes, a través de una metodología colaborativa de co-creación de materiales de aprendizaje compartidos. En la fase pre, se administró un cuestionario ad hoc para establecer los conocimientos previos del alumnado sobre el uso de la herramienta blog. Y en la fase post, se les preguntó por la utilidad y el impacto de la herramienta en el proceso de aprendizaje. Los resultados indican que la nueva herramienta impacta positivamente al facilitar compartir contenidos comunes, obtener información de interés y optar a ayudas para iniciarse en la investigación. Respecto al profesorado, Investiblog aumentó su implicación en el desarrollo de nuevas metodologías docentes co-creadas. En conclusión, las herramientas de aprendizaje co-creadas con el alumnado facilitan el aprendizaje colaborativo y estimulan la creatividad, estas herramientas pueden ser muy útiles para la docencia en situaciones como la provocada por la crisis COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.