This paper presents a novel framework for learning a soft-cascade detector with explicit computation time considerations. Classically, training techniques for softcascade detectors select a set of weak classifiers and their respective thresholds, solely to achieve the desired detection performance without any regard to the detector response time. Nevertheless, since computation time performance is of utmost importance in many time-constrained applications, this work divulges an optimization approach that aims to minimize the mean cascade response time, given a desired detection performance, fixed beforehand. The resulting problem is NP-Hard, therefore finding an optimal threshold vector can be very time-consuming, especially when building a soft-cascade detector of long length. An efficient local search procedure is presented that deals with long-length detectors. Our evaluations on two challenging public datasets confirm that a faster cascade detector can be learned while maintaining similar detection performances.
In this paper, the problem of minimizing the mean response-time of a soft-cascade detector is addressed. A soft-cascade detector is a machine learning tool used in applications that need to recognize the presence of certain types of object instances in images. Classical soft-cascade learning methods select the weak classifiers that compose the cascade, as well as the classification thresholds applied at each cascade level, so that a desired detection performance is reached. They usually do not take into account its mean response-time, which is also of importance in time-constrained applications. To overcome that, we consider the threshold selection problem aiming to minimize the computation time needed to detect a target object in an image (i.e., by classifying a set of samples). We prove the NP-hardness of the problem and propose a mathematical model that takes benefit from several dominance properties, which are put into evidence. On the basis of computational experiments, we show that we can provide a faster cascade detector, while maintaining the same detection performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.