Abstract:We study the soft graviton theorem recently proposed by Cachazo and Strominger. We employ the Cachazo, He and Yuan formalism to show that the next to subleading order soft factor for gravity is universal at tree level in arbitrary dimensions.
We construct an analytic black hole solution in SU(2) Einstein-Yang-Mills theory in five dimensions supporting a Meron field. The gauge field is proportional to a pure gauge and has a non-trivial topological charge. The would-be singularity at the Meron core gets shielded from the exterior by the black hole horizon. The metric has only one integration constant, namely, its ADM mass, which is shown to be finite once an appropriate boundary term is added to the action. The thermodynamics is also worked out, and a first-order phase transition, similar to the one occurring in the Reissner-Nordström case is identified. We also show that the solution produces a spin from isospin effect , i.e., even though the theory is constructed out of bosons only, the combined system of a scalar field and this background may become fermionic. More specifically, we study scalar excitations in this purely bosonic background and find that the system describes fermionic degrees of freedom at spatial infinity. Finally, for the asymptotically AdS 5 case, we study its consequences in the context of the AdS/CFT correspondence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.