Collagen and elastin are thought to dominate the elasticity of the connective tissue including lung parenchyma. The glycosaminoglycans on the proteoglycans may also play a role because osmolarity of interstitial fluid can alter the repulsive forces on the negatively charged glycosaminoglycans, allowing them to collapse or inflate, which can affect the stretching and folding pattern of the fibers. Hence, we hypothesized that the elasticity of lung tissue arises primarily from 1) the topology of the collagen-elastin network and 2) the mechanical interaction between proteoglycans and fibers. We measured the quasi-static, uniaxial stress-strain curves of lung tissue sheets in hypotonic, normal, and hypertonic solutions. We found that the stress-strain curve was sensitive to osmolarity, but this sensitivity decreased after proteoglycan digestion. Images of immunofluorescently labeled collagen networks showed that the fibers follow the alveolar walls that form a hexagonal-like structure. Despite the large heterogeneity, the aspect ratio of the hexagons at 30% uniaxial strain increased linearly with osmolarity. We developed a two-dimensional hexagonal network model of the alveolar structure incorporating the mechanical properties of the collagen-elastin fibers and their interaction with proteoglycans. The model accounted for the stress-strain curves observed under all experimental conditions. The model also predicted how aspect ratio changed with osmolarity and strain, which allowed us to estimate the Young's modulus of a single alveolar wall and a collagen fiber. We therefore identify a novel and important role for the proteoglycans: they stabilize the collagen-elastin network of connective tissues and contribute to lung elasticity and alveolar stability at low to medium lung volumes.
Emphysema causes a permanent destruction of alveolar walls leading to airspace enlargement, loss of elastic recoil, decrease in surface area for gas exchange, lung hyperexpansion, and increased work of breathing. The most accepted hypothesis of how emphysema develops is based on an imbalance of protease and antiprotease activity leading to the degradation of elastin within the fiber network of the extracellular matrix. Here we report novel roles for mechanical forces and collagen during the remodeling of lung tissue in a rat model of elastase-induced emphysema. We have developed a technique to measure the stress-strain properties of tissue sections while simultaneously visualizing the deformation of the immunofluorescently labeled elastin-collagen network. We found that in the elastase treated tissue significant remodeling leads to thickened elastin and collagen fibers and during stretching, the newly deposited elastin and collagen fibers undergo substantially larger distortions than in normal tissue. We also found that the threshold for mechanical failure of collagen, which provides mechanical stability to the normal lung, is reduced. Our results indicate that mechanical forces during breathing are capable of causing failure of the remodeled extracellular matrix at loci of stress concentrations and so contribute to the progression of emphysema.
The dynamic stiffness (H), damping coefficient (G), and harmonic distortion (k(d)) characterizing tissue nonlinearity of lung parenchymal strips from guinea pigs were assessed before and after treatment with elastase or collagenase between 0.1 and 3.74 Hz. After digestion, data were obtained both at the same mean length and at the same mean force of the strip as before digestion. At the same mean length, G and H decreased by approximately 33% after elastase and by approximately 47% after collagenase treatment. At the same mean force, G and H increased by approximately 7% after elastase and by approximately 25% after collagenase treatment. The k(d) increased more after collagenase (40%) than after elastase (20%) treatment. These findings suggest that, after digestion, the fraction of intact fibers decreases, which, at the same mean length, leads to a decrease in moduli. At the same mean force, collagen fibers operate at a higher portion of their stress-strain curve, which results in an increase in moduli. Also, G and H were coupled so that hysteresivity (G/H) did not change after treatments. However, k(d) was decoupled from elasticity and was sensitive to stretching of collagen, which may be of value in detecting structural alterations in the connective tissue of the lung.
We measured lung impedance in rats in closed chest (CC), open chest (OC), and isolated lungs (IL) at four transpulmonary pressures with a optimal ventilator waveform. Data were analyzed with an homogeneous linear or an inhomogeneous linear model. Both models include tissue damping and elastance and airway inertance. The homogeneous linear model includes airway resistance (Raw), whereas the inhomogeneous linear model has a continuous distribution of Raw characterized by the mean Raw and the standard deviation of Raw (SDR). Lung mechanics were compared with tissue strip mechanics at frequencies and operating stresses comparable to those during lung impedance measurements. The hysteresivity (eta) was calculated as tissue damping/elastance. We found that 1) airway and tissue parameters were different in the IL than in the CC and OC conditions; 2) SDR was lowest in the IL; and 3) eta in IL at low transpulmonary pressure was similar to eta in the tissue strip. We conclude that eta is primarily determined by lung connective tissue, and its elevated estimates from impedance data in the CC and OC conditions are a consequence of compartment-like heterogeneity being greater in CC and OC conditions than in the IL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.