Adult stem cells are characterized by self-renewal and multilineage differentiation, and these properties seem to be regulated by signals from adjacent differentiated cell types and by extracellular matrix molecules, which collectively define the stem cell "niche." Self-renewal is essential for the lifelong persistence of stem cells, but its regulation is poorly understood. In the mammalian brain, neurogenesis persists in two germinal areas, the subventricular zone (SVZ) and the hippocampus, where continuous postnatal neuronal production seems to be supported by neural stem cells (NSCs). Here we show that pigment epithelium-derived factor (PEDF) is secreted by components of the murine SVZ and promotes self-renewal of adult NSCs in vitro. In addition, intraventricular PEDF infusion activated slowly dividing stem cells, whereas a blockade of endogenous PEDF decreased their cycling. These data demonstrate that PEDF is a niche-derived regulator of adult NSCs and provide evidence for a role for PEDF protein in NSC maintenance.
Pigment epithelium-derived factor (PEDF) is an extracellular multifunctional protein belonging to the serpin superfamily with demonstrable neurotrophic, gliastatic, neuronotrophic, antiangiogenic, and antitumorigenic properties. We have previously provided biochemical evidence for high affinity PEDFbinding sites and proteins in plasma membranes of retina, retinoblastoma, and CNS cells. This study was designed to reveal a receptor involved in the biological activities of PEDF. Using a yeast two-hybrid screening, we identified a novel gene from pigment epithelium of the human retina that codes for a PEDFbinding partner, which we term PEDF-R. The derived polypeptide has putative transmembrane, intracellular and extracellular regions, and a phospholipase domain. Recently, PEDF-R (TTS-2.2/independent phospholipase A 2 (PLA 2 ) and mouse desnutrin/ATGL) has been described in adipose cells as a member of the new calcium-independent PLA 2 /nutrin/patatin-like phospholipase domain-containing 2 (PNPLA2) family that possesses triglyceride lipase and acylglycerol transacylase activities. Here we describe the PEDF-R gene expression in the retina and its heterologous expression by bacterial and eukaryotic systems, and we demonstrate that its protein product has specific and high binding affinity for PEDF, has a potent phospholipase A 2 activity that liberates fatty acids, and is associated with eukaryotic cell membranes. Most importantly, PEDF binding stimulates the enzymatic phospholipase A 2 activity of PEDF-R. In conclusion, we have identified a novel PEDF-R gene in the retina for a phospholipase-linked membrane protein with high affinity for PEDF, suggesting a molecular pathway by which ligand/receptor interaction on the cell surface could generate a cellular signal.
Myocilin is a secreted glycoprotein of unknown function that is ubiquitously expressed in many human organs, including the eye. Mutations in this protein produce glaucoma, a leading cause of blindness worldwide. To explore the biological role of myocilin and the pathogenesis of glaucoma, we have analyzed the expression of recombinant wild type and four representative pathogenic myocilin mutations (E323K, Q368X, P370L, and D380A) in transiently transfected cell lines derived from ocular and nonocular tissues. We found that wild type myocilin undergoes an intracellular endoproteolytic processing at the C terminus of Arg 226. This cleavage predicts the production of two fragments, one of 35 kDa containing the C-terminal olfactomedin-like domain, and another of 20 kDa containing the N-terminal leucine zipper-like domain. Here we have analyzed the 35-kDa processed fragment, and we have found that it is co-secreted with the nonprocessed protein. Western immunoblot analyses showed that human aqueous humor and some ocular tissues also contain the processed 35-kDa myocilin, indicating that the endoproteolytic cleavage occurs in vivo. Mutant myocilins accumulated in the endoplasmic reticulum of transfected cells as insoluble aggregates. Interestingly, the four pathogenic myocilins inhibited the endoproteolytic processing with varying efficiency. Furthermore, the mutation P370L, which produces the most severe glaucoma phenotype, also elicited the most potent endoproteolytic cleavage inhibition. We propose that the endoproteolytic processing might regulate the activity of myocilin and that the inhibition of the processing by pathogenic mutations impairs the normal role of myocilin.
The retinoblastoma susceptibility protein, Rb, has a key role in regulating cell-cycle progression via interactions involving the central "pocket" and C-terminal regions. While the N-terminal domain of Rb is dispensable for this function, it is nonetheless strongly conserved and harbors missense mutations found in hereditary retinoblastoma, indicating that disruption of its function is oncogenic. The crystal structure of the Rb N-terminal domain (RbN), reveals a globular entity formed by two rigidly connected cyclin-like folds. The similarity of RbN to the A and B boxes of the Rb pocket domain suggests that Rb evolved through domain duplication. Structural and functional analysis provides insight into oncogenicity of mutations in RbN and identifies a unique phosphorylation-regulated site of protein interaction. Additionally, this analysis suggests a coherent conformation for the Rb holoprotein in which RbN and pocket domains directly interact, and which can be modulated through ligand binding and possibly Rb phosphorylation.
MYOC, a gene involved in different types of glaucoma, encodes myocilin, a secreted glycoprotein of unknown function, consisting of an N-terminal leucine-zipper-like domain, a central linker region, and a C-terminal olfactomedin-like domain. Recently, we have shown that myocilin undergoes an intracellular endoproteolytic processing. We show herein that the proteolytic cleavage in the linker region splits the two terminal domains. The C-terminal domain is secreted to the culture medium, whereas the N-terminal domain mainly remains intracellularly retained. In transiently transfected 293T cells, the cleavage was prevented by calpain inhibitors, such as calpeptin, calpain inhibitor IV, and calpastatin. Since calpains are calciumactivated proteases, we analyzed how changes in either intra-or extracellular calcium affected the cleavage of myocilin. Intracellular ionomycin-induced calcium uptake enhanced myocilin cleavage, whereas chelation of extracellular calcium by EGTA inhibited the proteolytic processing. Calpains I and II cleaved myocilin in vitro. However, in cells in culture, only RNA interference knockdown of calpain II reduced myocilin processing. Subcellular fractionation and digestion of the obtained fractions with proteinase K showed that full-length myocilin resides in the lumen of the endoplasmic reticulum together with a subpopulation of calpain II. These data revealed that calpain II is responsible for the intracellular processing of myocilin in the lumen of the endoplasmic reticulum. We propose that this cleavage might regulate extracellular interactions of myocilin, contributing to the control of intraocular pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.