A novel procedure was developed for the synthesis of a periodic mesoporous organosilica (PMO), which was used to remove polycyclic aromatic hydrocarbons (PAHs) from aqueous solutions. Adsorption equilibrium isotherms and adsorption kinetics experiments were carried out in solutions of PAHs (2-60 mg L(-1)), using the PMO as adsorbent. Adsorption models were used to predict the mechanisms involved. The adsorption kinetics data best fitted the pseudo-first-order kinetic model for naphthalene, and to the pseudo-second-order model for fluorene, fluoranthene, pyrene, and acenaphtene. The intraparticle model was also tested and pointed to the occurrence of such processes in all cases. The isotherm models which best represented the data obtained were the Freundlich model for fluoranthene, pyrene, and fluorene, the Temkin model for naphthalene, and the Redlich-Peterson model for acenaphtene. PAHs showed similar behavior regarding kinetics after 24 h of contact between adsorbent and PAHs. FTIR, XRD, BET, and SEM techniques were used for the characterization of the adsorbent material.
The capacity of a periodic mesoporous organosilica (PMO) to adsorb the aromatic compounds benzene, toluene, o-, and p-xylenes (BTX), which are usually present in produced waters, was investigated under both column and batch processes. The PMO was synthesized by condensation of 1,4 bis(triethoxisilyl)benzene (BTEB) under acidic conditions by using structure-directing agent (SDA) Pluronic P123 in the presence of KCl. Thermogravimetric analysis showed that the presence of the surfactant decreases the thermal stability of the PMO. The small-angle X-ray diffraction pattern, as well as the nitrogen adsorption/desorption isotherm measurements, revealed that the synthesized material has a crystalline structure, with hexagonally-ordered cylindrical mesopores. The adsorption kinetics study indicated an adsorption equilibrium time of 50 min and also showed that the data best fitted the pseudo-first order kinetic model. The intraparticle diffusion model was also tested and pointed to the occurrence of such process in all cases. Both Langmuir and Temkin models best represented the adsorption isotherms of toluene; Langmuir and Redlich-Peterson models best represented the data obtained for the other compounds. Adsorption capacity decreases in the order benzene>o-xylene>p-xylene>toluene. Satisfactory results were observed in the application of the synthesized PMO for the removal of BTX from aqueous solution.
Parque de Desenvolvimento Tecnológico do Ceará, Rua do Contorno, s/n, Fortaleza -CE. BrasilRecebido em 22/8/06; aceito em 18/5/07; publicado na web em 19/12/07 SIMPLE SYSTEM FOR PREPARATION OF CHITOSAN MICROSPHERES. This article describes the construction and optimization of an inexpensive apparatus for the production of uniform and porous chitosan microspheres. It also describes the control of the main operational parameters and strategies for the production of uniform chitosan microspheres.Keywords: porous beads; chitosan; chitosan microspheres. INTRODUÇÃOA quitosana é um derivado da quitina, biopolímero presente nas carapaças dos crustáceos, nos exoesqueletos dos insetos e nas paredes celulares de fungos 1,2 . A quitina é constituída de unidades 2-acetamido-2-desoxi-D-glicopiranose unidas por ligações β-(1→4) e quando desacetilada, quer seja por tratamento com bases fortes quer seja por métodos microbiológicos, resulta na estrutura β-(1→4)-2-amino-2-desoxi-D-glicopiranose, conhecida como quitosana 1,2 . As propriedades da quitosana, como viscosidade, grau de desacetilação, massa molar dependem das fontes de matéria-prima e métodos de fabricação. O grau de desacetilação, uma das mais importantes propriedades químicas desse polímero, determina a quantidade de grupos amínicos na cadeia polimérica, sendo que, uma extensão acima de 60% de desacetilação, define a entidade química quitosana 2,3 . A quitosana nas formas de pó ou de flocos tem sido muito utilizada em processos de adsorção de íons metálicos 3-10 e corantes [11][12][13] . Todavia, nestas formas a quitosana apresenta duas grandes desvantagens: solubilidade em meio ácido, que dificulta sua recuperação, e baixa área superficial, que limita o acesso aos sítios de adsorção (grupos amino) não expostos, diminuindo a velocidade e a capacidade de adsorção.. Estes problemas podem ser contornados, respectivamente, promovendo-se a reticulação da cadeia polimérica da quitosana e sua modificação física, da forma de pó ou floco para a forma de esferas [14][15][16][17][18][19] . A produção de esferas de quitosana juntamente com a sua funcionalização propiciam a obtenção de um material com elevada capacidade de adsorção de íons metálicos, como tem sido demonstrado em diversas pesquisas [20][21][22][23][24][25][26][27] . Na literatura, diferentes métodos descrevendo o processo de preparação de microesferas de quitosana têm sido publicados, tais como atomização 28,29 , emulsão 30,31 e inversão de fase 32 . Neste trabalho, as microesferas de quitosana foram preparadas pelo método de inversão de fase baseado no trabalho de Rorrer 32 . Entretanto, a confecção reprodutível de microesferas de quitosana porosas e uniformes por esse método depende do controle dos parâmetros: velocidade do fluxo de gotejamento da solução de quitosana, velocidade do fluxo de ar, diâmetro da agulha do gotejador, espaço anular (espaço entre ponta da agulha do tubo ao tubo de saída de ar) e a altura do gotejador em relação à superfície da solução coagulante, bem como da densidade da solução coagulant...
In this work, 8-hydroxyquinoline is used as the active sites in cross-linked chitosan beads with epichlorohydrin (CT-8HQ). The CT-8HQ material was shaped in bead form and used for heavy metal removal from aqueous solution. The study was carried out at pH 5.0 with both batch and column methods and the maximum adsorption capacity of metal ions by the CT-8HQ was attained in 4 h in the batch experiment. The adsorption capacity order was: Cu 2+ A Ni 2+ A Zn 2+ for both mono-and multi-component systems with batch conditions. From breakthrough curves with column conditions, the adsorption capacity followed the order Cu 2+ A Zn 2+ A Ni 2+ for both monoand multi-component systems. The CT-8HQ beads maintained good metal adsorption capacity for all five cycles with absorbent restoration achieved with the use of 1.0 mol L -1 HCl solution, with 90% regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.