e Uropathogenic Escherichia coli (UPEC) is the most common cause of community-and hospital-acquired urinary tract infections (UTIs). Isolates from uncomplicated community-acquired UTIs express a variety of virulence traits that promote the efficient colonization of the urinary tract. In contrast, nosocomial UTIs can be caused by E. coli strains that differ in their virulence traits from the community-acquired UTI isolates. UPEC virulence markers are used to distinguish these facultative extraintestinal pathogens, which belong to the intestinal flora of many healthy individuals, from intestinal pathogenic E. coli (IPEC). IPEC is a diarrheagenic pathogen with a characteristic virulence gene set that is absent in UPEC. Here, we characterized 265 isolates from patients with UTIs during inpatient or outpatient treatment at a hospital regarding their phylogenies and IPEC or UPEC virulence traits. Interestingly, 28 of these isolates (10.6%) carried typical IPEC virulence genes that are characteristic of enteroaggregative E. coli (EAEC), Shiga toxin-producing E. coli (STEC), and atypical enteropathogenic E. coli (aEPEC), although IPEC is not considered a uropathogen. Twenty-three isolates harbored the astA gene coding for the EAEC heat-stable enterotoxin 1 (EAST1), and most of them carried virulence genes that are characteristic of UPEC and/or EAEC. Our results indicate that UPEC isolates from hospital patients differ from archetypal community-acquired isolates from uncomplicated UTIs by their spectrum of virulence traits. They represent a diverse group, including EAEC, as well as other IPEC pathotypes, which in addition contain typical UPEC virulence genes. The combination of typical extraintestinal pathogenic E. coli (ExPEC) and IPEC virulence determinants in some isolates demonstrates the marked genome plasticity of E. coli and calls for a reevaluation of the strict pathotype classification of EAEC.
This study aimed to assess the molecular basis of the resistance to carbapenems in clinical isolates of Pseudomonas aeruginosa recovered from a tertiary-level health facility in San José , Costa Rica. A total of 198 non-duplicated isolates were evaluated for their susceptibility to b-lactams, aminoglycosides and fluoroquinolones. The production of metallo-b-lactamases (MBLs), the presence of MBL encoding genes (bla IMP , bla VIM and bla GIM-1 ) and the occurrence of these genes within class 1 integrons were investigated. In addition, an ERIC2 PCR fingerprinting method was used to elucidate the distribution of the detected MBL genes within the strain collection. Of the 198 isolates tested, 125 (63.1 %) were categorized as carbapenem-resistant. The majority (88.8 %) of the carbapemen-resistant isolates also showed resistance to ceftazidime, cefepime, aztreonam, ticarcillin/clavulanic acid, amikacin, gentamicin, tobramycin, ciprofloxacin and gatifloxacin. Among the carbapenem-resistant isolates, 102 (81.6 %) showed MBL activity. Strikingly, both bla IMP and bla VIM genes were simultaneously detected in most (94.1 %) of the 102 MBL producers. Five carbapenem-resistant MBL producers were positive only for bla IMP genes. Almost 70 % of the isolates examined harboured the intI1 gene, accompanied by the sul1 and qacED1 genes in 136 (99 %) and 122 (89 %) isolates, respectively. The majority (94.4 %) of the carbapenem-resistant isolates carried the intI1 gene, in contrast to 26 % of the carbapenem-susceptible isolates. Ninety-three out of 96 (96.9 %) isolates carrying both bla IMP and bla VIM genes also harboured the intI1, sul1 and qacED1 genes. Gene cassettes from carbapenem-susceptible and MBL-negative carbapenem-resistant isolates encoded aminoglycoside-resistance enzymes (aadA2, aadA4 and aadA6) as well as orfD and qacF genes. RAPD analysis distributed 126 of the isolates in 29 clusters. Eighty of the 90 bla IMP + bla VIM + isolates were sorted into 16 different clusters, suggesting that the bla IMP and bla VIM genes detected were located within a genetic element capable of lateral transfer. Carbapenem-resistant MBL-positive isolates were recovered from almost all hospital wards and were over-represented in samples obtained from the surgical emergency and intensive care therapy units. Remarkably, three carbapenem-resistant isolates, exhibiting MBL activity and carrying both bla IMP and bla VIM genes, were recovered from outpatients. Sequence analysis of both bla genes in various isolates revealed that they correspond to the alleles bla IMP-18 and bla VIM-2 . To our knowledge, this is the first report of the combination of two metallo-b-lactamases encoded by the bla IMP-18 and bla VIM-2 genes in P. aeruginosa.
c Enterohemorrhagic Escherichia coli (EHEC), a subgroup of Shiga toxin (Stx)-producing E. coli (STEC), is a leading cause of diarrhea and hemolytic-uremic syndrome (HUS) in humans. However, urinary tract infections (UTIs) caused by this microorganism but not associated with diarrhea have occasionally been reported. We geno-and phenotypically characterized three EHEC isolates obtained from the urine of hospitalized patients suffering from UTIs. These isolates carried typical EHEC virulence markers and belonged to HUS-associated E. coli (HUSEC) clones, but they lacked virulence markers typical of uropathogenic E. coli. One isolate exhibited a localized adherence (LA)-like pattern on T24 urinary bladder epithelial cells. Since the glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) are well-known receptors for Stx but also for P fimbriae, a major virulence factor of extraintestinal pathogenic E. coli (ExPEC), the expression of Gb3Cer and Gb4Cer by T24 cells and in murine urinary bladder tissue was examined by thin-layer chromatography and mass spectrometry. We provide data indicating that Stxs released by the EHEC isolates bind to Gb3Cer and Gb4Cer isolated from T24 cells, which were susceptible to Stx. All three EHEC isolates expressed stx genes upon growth in urine. Two strains were able to cause UTI in a murine infection model and could not be outcompeted in urine in vitro by typical uropathogenic E. coli isolates. Our results indicate that despite the lack of ExPEC virulence markers, EHEC variants may exhibit in certain suitable hosts, e.g., in hospital patients, a uropathogenic potential. The contribution of EHEC virulence factors to uropathogenesis remains to be further investigated. Escherichia coli is one of the most versatile microorganisms that rapidly colonizes the gastrointestinal tract of newborns (1). Although E. coli usually represents an important commensal of the normal intestinal microbiota, other variants that are able to cause infections exist (1, 2). On the basis of their virulence properties and the site of infection, these bacteria are classified as intestinal pathogenic E. coli (IPEC), which are associated with diarrhea, and extraintestinal pathogenic E. coli (ExPEC), which cause infections beyond the intestinal tract (3). Enterohemorrhagic E. coli (EHEC) belongs to the IPEC group of bacteria and represents one of the main causative agents of diarrhea, hemorrhagic colitis (HC), and hemolytic-uremic syndrome (HUS) in humans (4). The characteristic main EHEC virulence markers include the locus of enterocyte effacement (LEE) pathogenicity island and Shiga toxin (Stx)-encoding bacteriophages. Additionally, other toxins, including the cytolethal distending toxin (CDT), EHEC hemolysin (Hly), serine protease EspP, subtilase cytotoxin, cyclomodulin Cif, and different siderophore systems, as well as adhesins can also contribute to EHEC pathogenesis (5). These EHEC virulence factors are absent from archetypal ExPEC strains.Similarly, the main ExPEC virulence fa...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.