Lignin is one of the wood and plant cell wall components that is available in large quantities in nature. Its polyphenolic chemical structure has been of interest for valorization and industrial application studies. Lignin can be obtained from wood by various delignification chemical processes, which give it a structure and specific properties that will depend on the plant species. Due to the versatility and chemical diversity of lignin, the chemical industry has focused on its use as a viable alternative of renewable raw material for the synthesis of new and sustainable biomaterials. However, its structure is complex and difficult to characterize, presenting some obstacles to be integrated into mixtures for the development of polymers, fibers, and other materials. The objective of this review is to present a background of the structure, biosynthesis, and the main mechanisms of lignin recovery from chemical processes (sulfite and kraft) and sulfur-free processes (organosolv) and describe the different forms of integration of this biopolymer in the synthesis of sustainable materials. Among these applications are phenolic adhesive resins, formaldehyde-free resins, epoxy resins, polyurethane foams, carbon fibers, hydrogels, and 3D printed composites.
Eucalyptus globulus is the second most important economic forest species in Chile. Its main use is in the kraft pulp industry, where large amounts of bark waste are generated. Due to its fibrous characteristics, E. globulus bark is proposed as an alternative source of fibres for papermaking. This study focuses on obtaining fibres for liner paper manufacture. A neutral sulphite semi-chemical (NSSC) process was performed, varying the sodium sulphite (5% to 16%) and the sodium carbonate (2% and 4%) concentrations using two reaction temperatures (160°C and 170°C). The NSSC process at 170°C, 16% of sulphite, and 2% of sodium carbonate proved to be the best condition to obtain higher mechanical performance of papers. As the pulping conditions become more drastic, the yield drops, and the physicomechanical properties of paper increases. Results showed that pulps from E. globulus bark could turn into source of fibres for papermaking and other related products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.