Absolute extinction cross sections of individual silver nanocube dimers are measured using spatial modulation spectroscopy in correlation with their transmission electron microscopy images. For very small interparticle distances and an incident light polarized along the dimer axis, we give evidence for a clear splitting of the main dipolar surface plasmon resonance which is found to be essentially induced by cube edge rounding effects. Supported by discrete dipole approximation and finite element method calculations, this phenomenon highlights the high sensitivity of the plasmonic coupling to the exact shape of the effective capacitor formed by the facing surfaces of both particles, especially in the regime of very close proximity.
This report describes the preparation and characterization of new magnetic fluorescent nanoparticles and our success in using them to label living cells. The bifunctional nanoparticles possess a magnetic oxide core composed of a dimercaptosuccinic acid (DMSA) ligand at the surface and a covalently attached fluorescent dye. The nanoparticles exhibited a high affinity for cells, which was demonstrated by fluorescence microscopy and magnetophoresis. Fluorescence microscopy was used to monitor the localization patterns of magnetic nanoparticles associated with cells. We observed two types of magnetic labeling: adsorption of the nanoparticles on the cell membrane (membranous fluorescence) and internalization of the nanoparticles inside the cell (intracellular vesicular fluorescence). After internalization, nanoparticles were confined inside endosomes, which are submicrometric vesicles of the endocytotic pathway. We demonstrated that endosome movement could be piloted inside the cell by external magnetic fields such that small fluorescent chains of magnetic endosomes were formed in the cell cytoplasm in the direction of the applied magnetic field. Finally, by measuring the critical cellular magnetic load (quantitated by magnetophoresis), we have demonstrated the potential of this new magneto-fluorescent nanoagent for medical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.