The widespread use of fish as model systems is still limited by the mosaic distribution of cells transiently expressing transgenes leading to a low frequency of transgenic fish. Here we present a strategy that overcomes this problem. Transgenes of interest were flanked by two I-SceI meganuclease recognition sites, and co-injected together with the I-SceI meganuclease enzyme into medaka embryos (Oryzias latipes) at the one-cell stage. First, the promoter dependent expression was strongly enhanced. Already in F0, 76% of the embryos exhibited uniform promoter dependent expression compared to 26% when injections were performed without meganuclease. Second, the transgenesis frequency was raised to 30.5%. Even more striking was the increase in the germline transmission rate. Whereas in standard protocols it does not exceed a few percent, the number of transgenic F1 offspring of an identified founder fish reached the optimum of 50% in most lines resulting from meganuclease co-injection. Southern blot analysis showed that the individual integration loci contain only one or few copies of the transgene in tandem. At a lower rate this method also leads to enhancer trapping effects, novel patterns that are likely due to the integration of the transgene in the vicinity of enhancer elements. Meganuclease co-injection thus provides a simple and highly efficient tool to improve transgenesis by microinjection.
Few adult neural stem cells have been characterized in vertebrates. Although teleosts continually generate new neurons in many regions of the brain after embryogenesis, only two types of neural stem cells (NSCs) have been reported in zebrafish: glial cells in the forebrain resembling mammalian NSCs, and neuroepithelial cells in the cerebellum. Here, following our previous studies on dividing progenitors (Nguyen et al. [1999]: J Comp Neurol 413:385-404.), we further evidenced NSCs in the optic tectum (OT) of juvenile and adult in the medaka, Oryzias latipes. To detect very slowly cycling progenitors, we did not use the commonly used BrdU/PCNA protocol, in which PCNA may not be present during a transiently quiescent state. Instead, we report the optimizations of several protocols involving long subsequent incubations with two thymidine analogs (IdU and CldU) interspaced with long chase times between incubations. These protocols allowed us to discriminate and localize fast and slow cycling cells in OT of juvenile and adult in the medaka. Furthermore, we showed that adult OT progenitors are not glia, as they express neither brain lipid-binding protein (BLBP) nor glial fibrillary acidic protein (GFAP). We also showed that expression of pluripotency-associated markers (Sox2, Musashi1 and Bmi1) colocalized with OT progenitors. Finally, we described the spatio-temporally ordered population of NSCs and progenitors in the medaka OT. Hence, the medaka appears as an invaluable model for studying neural progenitors that will open the way to further exciting comparative studies of neural stem cells in vertebrates.
BackgroundTeeth and tooth-like structures, together named odontodes, are repeated organs thought to share a common evolutionary origin. These structures can be found in gnathostomes at different locations along the body: oral teeth in the jaws, teeth and denticles in the oral-pharyngeal cavity, and dermal denticles on elasmobranch skin. We, and other colleagues, had previously shown that teeth in any location were serially homologous because: i) pharyngeal and oral teeth develop through a common developmental module; and ii) the expression patterns of the Dlx genes during odontogenesis were highly divergent between species but almost identical between oral and pharyngeal dentitions within the same species. Here we examine Dlx gene expression in oral teeth and dermal denticles in order to test the hypothesis of serial homology between these odontodes.ResultsWe present a detailed comparison of the first developing teeth and dermal denticles (caudal primary scales) of the dogfish (Scyliorhinus canicula) and show that both odontodes develop through identical stages that correspond to the common stages of oral and pharyngeal odontogenesis. We identified six Dlx paralogs in the dogfish and found that three showed strong transcription in teeth and dermal denticles (Dlx3, Dlx4 and Dlx5) whereas a weak expression was detected for Dlx1 in dermal denticles and teeth, and for Dlx2 in dermal denticles. Very few differences in Dlx expression patterns could be detected between tooth and dermal denticle development, except for the absence of Dlx2 expression in teeth.ConclusionsTaken together, our histological and expression data strongly suggest that teeth and dermal denticles develop from the same developmental module and under the control of the same set of Dlx genes. Teeth and dermal denticles should therefore be considered as serial homologs developing through the initiation of a common gene regulatory network (GRN) at several body locations. This mechanism of heterotopy supports the 'inside and out' model that has been recently proposed for odontode evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.