SummaryHox transcription factors (TFs) are essential for vertebrate development, but how these evolutionary conserved proteins function in vivo remains unclear. Because Hox proteins have notoriously low binding specificity, they are believed to bind with cofactors, mainly homeodomain TFs Pbx and Meis, to select their specific targets. We mapped binding of Meis, Pbx, and Hoxa2 in the branchial arches, a series of segments in the developing vertebrate head. Meis occupancy is largely similar in Hox-positive and -negative arches. Hoxa2, which specifies second arch (IIBA) identity, recognizes a subset of Meis prebound sites that contain Hox motifs. Importantly, at these sites Meis binding is strongly increased. This enhanced Meis binding coincides with active enhancers, which are linked to genes highly expressed in the IIBA and regulated by Hoxa2. These findings show that Hoxa2 operates as a tissue-specific cofactor, enhancing Meis binding to specific sites that provide the IIBA with its anatomical identity.
Pea3 and Erm are transcription factors expressed in normal developing branching organs such as the mammary gland. Deregulation of their expression is generally associated with tumorigenesis and particularly breast cancer. By using RNA interference (RNAi) to downregulate the expression of Pea3 and/or Erm in a mammary cancer cell line, we present evidence for a role of these factors in proliferation, migration and invasion capacity of cancer cells. We have used different small interfering RNAs (siRNAs) targeting pea3 and erm transcripts in transiently or stably transfected cells, and assessed the physiological behavior of these cells in in vitro assays. We also identified an in vivo alteration of tumor progression after injection of cells that overexpress pea3 and/or erm short hairpin RNAs (shRNAs) in immunodeficient mice. Using transcriptome profiling in Pea3- or Erm-targeted cells, two largely independent gene expression programs were identified on the basis of their shared phenotypic modifications. A statistically highly significant part of both sets of target genes had previously been already associated with the cellular signaling pathways of the `proliferation, migration, invasion' class. These data provide the first evidence, by using endogenous knockdown, for pivotal and complementary roles of Pea3 and Erm transcription factors in events crucial to mammary tumorigenesis, and identify sets of downstream target genes whose expression during tumorigenesis is regulated by these transcription factors.
Hox genes encode transcription factors with important roles during embryogenesis and tissue differentiation. Genetic analyses initially demonstrated that interfering with Hox genes has profound effects on the specification of cell identity, suggesting that Hox proteins regulate very specific sets of target genes. However, subsequent biochemical analyses revealed that Hox proteins bind DNA with relatively low affinity and specificity. Furthermore, it became clear that a given Hox protein could activate or repress transcription depending on the context. A resolution to these paradoxes presented itself with the discovery that Hox proteins do not function in isolation, but interact with other factors in complexes. The first such “cofactors” were members of the Extradenticle/Pbx and Homothorax/Meis/Prep families. However, the list of Hox-interacting proteins has continued to grow, suggesting that Hox complexes contain many more components than initially thought. Additionally, the activities of the various components and the exact mechanisms whereby they modulate the activity of the complex remain puzzling. Here we review the various proteins known to participate in Hox complexes and discuss their likely functions. We also consider that Hox complexes of different compositions may have different activities and discuss mechanisms whereby Hox complexes may be switched between active and inactive states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.