CYP703 is a cytochrome P450 family specific to land plants. Typically, each plant species contains a single CYP703. Arabidopsis thaliana CYP703A2 is expressed in the anthers of developing flowers. Expression is initiated at the tetrad stage and restricted to microspores and to the tapetum cell layer. Arabidopsis CYP703A2 knockout lines showed impaired pollen development and a partial male-sterile phenotype. Scanning electron and transmission electron microscopy of pollen from the knockout plants showed impaired pollen wall development with absence of exine. The fluorescent layer around the pollen grains ascribed to the presence of phenylpropanoid units in sporopollenin was absent in the CYP703A2 knockout lines. Heterologous expression of CYP703A2 in yeast cells demonstrated that CYP703 catalyzes the conversion of medium-chain saturated fatty acids to the corresponding monohydroxylated fatty acids, with a preferential hydroxylation of lauric acid at the C-7 position. Incubation of recombinant CYP703 with methanol extracts from developing flowers confirmed that lauric acid and in-chain hydroxy lauric acids are the in planta substrate and product, respectively. These data demonstrate that in-chain hydroxy lauric acids are essential building blocks in sporopollenin synthesis and enable the formation of ester and ether linkages with phenylpropanoid units. This study identifies CYP703 as a P450 family specifically involved in pollen development.
The anther cuticle and microspore exine act as protective barriers for the male gametophyte and pollen grain, but relatively little is known about the mechanisms underlying the biosynthesis of the monomers of which they are composed. We report here the isolation and characterization of a rice (Oryza sativa) male sterile mutant, cyp704B2, which exhibits a swollen sporophytic tapetal layer, aborted pollen grains without detectable exine, and undeveloped anther cuticle. In addition, chemical composition analysis indicated that cutin monomers were hardly detectable in the cyp704B2 anthers. These defects are caused by a mutation in a cytochrome P450 family gene, CYP704B2. The CYP704B2 transcript is specifically detected in the tapetum and the microspore from stage 8 of anther development to stage 10. Heterologous expression of CYP704B2 in yeast demonstrated that CYP704B2 catalyzes the production of omega -hydroxylated fatty acids with 16 and 18 carbon chains. Our results provide insights into the biosynthesis of the two biopolymers sporopollenin and cutin. Specifically, our study indicates that the omega -hydroxylation pathway of fatty acids relying on this ancient CYP704B family, conserved from moss to angiosperms, is essential for the formation of both cuticle and exine during plant male reproductive and spore development.
Sporopollenin is the major component of the outer pollen wall (exine). Fatty acid derivatives and phenolics are thought to be its monomeric building blocks, but the precise structure, biosynthetic route, and genetics of sporopollenin are poorly understood. Based on a phenotypic mutant screen in Arabidopsis (Arabidopsis thaliana), we identified a cytochrome P450, designated CYP704B1, as being essential for exine development. CYP704B1 is expressed in the developing anthers. Mutations in CYP704B1 result in impaired pollen walls that lack a normal exine layer and exhibit a characteristic striped surface, termed zebra phenotype. Heterologous expression of CYP704B1 in yeast cells demonstrated that it catalyzes ω-hydroxylation of long-chain fatty acids, implicating these molecules in sporopollenin synthesis. Recently, an anther-specific cytochrome P450, denoted CYP703A2, that catalyzes in-chain hydroxylation of lauric acid was also shown to be involved in sporopollenin synthesis. This shows that different classes of hydroxylated fatty acids serve as essential compounds for sporopollenin formation. The genetic relationships between CYP704B1, CYP703A2, and another exine gene, MALE STERILITY2, which encodes a fatty acyl reductase, were explored. Mutations in all three genes resulted in pollen with remarkably similar zebra phenotypes, distinct from those of other known exine mutants. The double and triple mutant combinations did not result in the appearance of novel phenotypes or enhancement of single mutant phenotypes. This implies that each of the three genes is required to provide an indispensable subset of fatty acid-derived components within the sporopollenin biosynthesis framework.
We describe lacerata (lcr) mutants of Arabidopsis, which display various developmental abnormalities, including postgenital organ fusions, and report cloning of the LCR gene by using the maize transposon Enhancer͞Suppressor-mutator (En͞Spm). The pleiotropic mutant phenotype could be rescued by genetic complementation of lcr mutants with the wild-type LCR gene. The LCR gene encodes a cytochrome P450 monooxygenase, CYP86A8, which catalyzes -hydroxylation of fatty acids ranging from C12 to C18:1, as demonstrated by expression of the gene in yeast. Although palmitic and oleic acids were efficient substrates for LCR, 9,10-epoxystearate was not metabolized. Taken together with previous studies, our findings indicate that LCR-dependent -hydroxylation of fatty acids could be implicated in the biosynthesis of cutin in the epidermis and in preventing postgenital organ fusions. Strikingly, the same pathway seems to control trichome differentiation, the establishment of apical dominance, and senescence in plants.T he epidermis of plants is a composite tissue that comprises several cell types. Some of these, such as stoma cells, trichomes, and papilla cells, can be easily distinguished from the predominating pavement cells by their characteristic morphological features. Other cell types are not readily distinguishable, although they apparently perform specific functions. One example of this is given by epidermal cells on the adaxial side of carpels, which exhibit a unique contact response during elaboration of the pistil and are able to adhere and redifferentiate into parenchymatous cells. Another unique feature of these epidermal cells is their ability to adhere to the growing pollen tube and guide it to the embryo sac (1, 2). In contrast to animals, where selectively established cell adhesions are common and play an enormous role in development (3, 4), examples of regular cell adhesions in higher plants are rare, and indeed may be restricted to the processes cited above. In particular mutants in several plant species fusions of organs occur during development of the shoot, in a process that resembles the regular fusion of carpels. It is not yet known whether the same molecular mechanisms underlie all instances of cell fusions. By comparison with the epidermis cells of fused carpels, epidermis cells at sutures in fusion mutants do not alter their normal anticlinal plane of division and do not redifferentiate in response to the adhesion. Cell differentiation, however, is affected in at least two fusion mutants. The epidermis of crinkly4 (cr4) maize plants contains enlarged, occasionally spherical, cells, which can divide periclinally to give rise to multilayered sectors (5). In the fiddlehead ( fdh) mutant of Arabidopsis, the epidermis of rosette leaves displays a 2-fold reduction in the number of trichomes (6). These findings indicate a link between the altered cell differentiation in the epidermis and the fusion of organs in the mutants.By using transposon tagging, FDH and CR4, two genes that result in organ fusions when m...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.