Existence and stability of standing waves for nonlinear fractional Schrödinger equations J. Math. Phys. 53, 083702 (2012) N-fold Darboux transformations and soliton solutions of three nonlinear equations J. Math. Phys. 53, 083502 (2012) Some algebro-geometric solutions for the coupled modified Kadomtsev-Petviashvili equations arising from the Neumann type systems
The paper is an inquiry of the algebraic foundations of the theory of dispersionless integrable hierarchies, like the dispersionless KP and modified KP hierarchies and the universal Whitham's hierarchy of genus zero. It stands out for the idea of interpreting these hierarchies as equations of coisotropic deformations for the structure constants of certain associative algebras. It discusses the link between the structure constants and the Hirota's tau function, and shows that the dispersionless Hirota's bilinear equations are, within this approach, a way of writing the associativity conditions for the structure constants in terms of the tau function. It also suggests a simple interpretation of the algebro-geometric construction of the universal Whitham's equations of genus zero due to Krichever.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.