New Findings What is the central question of this study?We hypothesized that central inflammatory processes that involve activation of microglia and astrocytes contribute to the development of Gαi2 protein‐dependent, salt‐sensitive hypertension. What is the main finding and its importance?The main finding is that PVN‐specific inflammatory processes, driven by microglial activation, appear to be linked to the development of Gαi2 protein‐dependent, salt‐sensitive hypertension in Sprague–Dawley rats. This finding might reveal new mechanistic targets in the treatment of hypertension. Abstract The central mechanisms underlying salt‐sensitive hypertension, a significant public health issue, remain to be established. Researchers in our laboratory have reported that hypothalamic paraventricular nucleus (PVN) Gαi2 proteins mediate the sympathoinhibitory and normotensive responses to high sodium intake in salt‐resistant rats. Given the recent evidence of central inflammation in animal models of hypertension, we hypothesized that PVN inflammation contributes to Gαi2 protein‐dependent, salt‐sensitive hypertension. Male Sprague–Dawley rats received chronic intracerebroventricular infusions of a targeted Gαi2 or control scrambled oligodeoxynucleotide (ODN) and were maintained for 7 days on a normal‐salt (NS; 0.6% NaCl) or high‐salt (HS; 4% NaCl) diet; in subgroups on HS, intracerebroventricular minocycline (microglial inhibitor) was co‐infused with ODNs. Radiotelemetry was used in subgroups of rats to measure mean arterial pressure (MAP) chronically. In a separate group of rats, plasma noradrenaline, plasma renin activity, urinary angiotensinogen and mRNA levels of the PVN pro‐inflammatory cytokines TNFα, IL‐1β and IL‐6 and the anti‐inflammatory cytokine IL‐10 were assessed. In additional groups, immunohistochemistry was performed for markers of PVN and subfornical organ microglial activation and cytokine levels and PVN astrocyte activation. High salt intake evoked salt‐sensitive hypertension, increased plasma noradrenaline, PVN pro‐inflammatory cytokine mRNA upregulation, anti‐inflammatory cytokine mRNA downregulation and PVN‐specific microglial activation in rats receiving a targeted Gαi2 but not scrambled ODN. Minocycline co‐infusion significantly attenuated the increase in MAP and abolished the increase in plasma noradrenaline and inflammation in Gαi2 ODN‐infused animals on HS. Our data suggest that central Gαi2 protein prevents microglial‐mediated PVN inflammation and the development of salt‐sensitive hypertension.
Increased sympathoexcitation and renal sodium retention during high salt intake are hallmarks of the salt sensitivity of blood pressure. The mechanism(s) by which excessive sympathetic nervous system release of norepinephrine influences renal sodium reabsorption is unclear. However, studies demonstrate that norepinephrine can stimulate the activity of the NCC (sodium chloride cotransporter) and promote the development of SSH (salt-sensitive hypertension). The adrenergic signaling pathways governing NCC activity remain a significant source of controversy with opposing studies suggesting a central role of upstream α 1 - and β-adrenoceptors in the canonical regulatory pathway involving WNKs (with-no-lysine kinases), SPAK (STE20/SPS1-related proline alanine-rich kinase), and OxSR1 (oxidative stress response 1). In our previous study, α 1 -adrenoceptor antagonism in norepinephrine-infused male Sprague-Dawley rats prevented the development of norepinephrine–evoked SSH in part by suppressing NCC activity and expression. In these studies, we used selective adrenoceptor antagonism in male Dahl salt–sensitive rats to test the hypothesis that norepinephrine-mediated activation of the NCC in Dahl SSH occurs via an α 1 -adrenoceptor dependent pathway. A high-salt diet evoked significant increases in NCC activity, expression, and phosphorylation in Dahl salt–sensitive rats that developed SSH. Increases were associated with a dysfunctional WNK1/4 dynamic and a failure to suppress SPAK/OxSR1 activity. α 1 -adrenoceptor antagonism initiated before high–salt intake or following the establishment of SSH attenuated blood pressure in part by suppressing NCC activity, expression, and phosphorylation. Collectively, our findings support the existence of a norepinephrine-activated α 1 -adrenoceptor gated pathway that relies on WNK/SPAK/OxSR1 signaling to regulate NCC activity in SSH.
Summary Expansions of microsatellite repeats are responsible for numerous hereditary diseases in humans, including myotonic dystrophy and Friedreich’s ataxia. While the length of an expandable repeat is the main factor determining disease inheritance, recent data point to genomic trans-modifiers that can impact the likelihood of expansions and disease progression. Detection of these modifiers may lead to understanding and treating repeat expansion diseases. Here we describe a method for the rapid, genome-wide identification of trans-modifiers for repeat expansion in a yeast experimental system. Using this method, we found that missense mutations in the endoribonuclease subunit (Ysh1) of the mRNA cleavage and polyadenylation complex dramatically increase the rate of (GAA)n repeat expansions, but only when they are actively transcribed. These expansions correlate with slower transcription elongation caused by the ysh1 mutation. These results reveal a previously unsuspected interplay between RNA processing and repeat-mediated genome instability, confirming the validity of our approach.
Salt sensitivity of blood pressure is characterized by inappropriate sympathoexcitation and renal Na+ reabsorption during high salt intake. In salt-resistant animal models, exogenous norepinephrine (NE) infusion promotes salt-sensitive hypertension and prevents dietary Na+-evoked suppression of the Na+-Cl− cotransporter (NCC). Studies of the adrenergic signaling pathways that modulate NCC activity during NE infusion have yielded conflicting results implicating α1- and/or β-adrenoceptors and a downstream kinase network that phosphorylates and activates NCC, including with no lysine kinases (WNKs), STE20/SPS1-related proline-alanine-rich kinase (SPAK), and oxidative stress response 1 (OxSR1). In the present study, we used selective adrenoceptor antagonism in NE-infused male Sprague-Dawley rats to investigate the differential roles of α1- and β-adrenoceptors in sympathetically mediated NCC regulation. NE infusion evoked salt-sensitive hypertension and prevented dietary Na+-evoked suppression of NCC mRNA, protein expression, phosphorylation, and in vivo activity. Impaired NCC suppression during high salt intake in NE-infused rats was paralleled by impaired suppression of WNK1 and OxSR1 expression and SPAK/OxSR1 phosphorylation and a failure to increase WNK4 expression. Antagonism of α1-adrenoceptors before high salt intake or after the establishment of salt-sensitive hypertension restored dietary Na+-evoked suppression of NCC, resulted in downregulation of WNK4, SPAK, and OxSR1, and abolished the salt-sensitive component of hypertension. In contrast, β-adrenoceptor antagonism attenuated NE-evoked hypertension independently of dietary Na+ intake and did not restore high salt-evoked suppression of NCC. These findings suggest that a selective, reversible, α1-adenoceptor-gated WNK/SPAK/OxSR1 NE-activated signaling pathway prevents dietary Na+-evoked NCC suppression, promoting the development and maintenance of salt-sensitive hypertension.
The AA. studied the glycometabolic activity of prazosin, a hypotensive drug with an adrenergic blocking activity of alpha-1-selective type. Twenty-two moderately hypertensive subjects were studied. Their ages ranged from 37 to 57 years; 10 of the patients had non-insulin dependent diabetes mellitus. After overnight fasting every patient underwent an oral glucose test (g 100) at 09:00. Blood samples were withdrawn at 0, 30, 60, 90 and 120 minutes. Each patient was then given in randomized and double-blind fashion placebo or prazosin (4 mg, 2 pills of Minipress Pfizer per day) for the following 7 days; then another glucose load was administered. Glucose (enzymatic method), insulin and glucagon (RIA method) were measured in each blood sample. In non diabetic subjects glucose levels (60, 90, 120 min and total area) after oral glucose and prazosin were statistically higher (p less than 0.05, p less than 0.01, p less than 0.05) than after glucose only. No significant difference between the two curves was observed in the diabetic group. IRI levels in normal subjects were statistically higher after 120 min and in the total area, while no evident changes were noted in the diabetic group. The glucagon curve seen after oral glucose was not modified by prazosin in either group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.