[1] The evolution of ocean temperature measurement systems is presented with a focus on the development and accuracy of two critical devices in use today (expendable bathythermographs and conductivity-temperature-depth instruments used on Argo floats). A detailed discussion of the accuracy of these devices and a projection of the future of ocean temperature measurements are provided. The accuracy of ocean temperature measurements is discussed in detail in the context of ocean heat content, Earth's energy imbalance, and thermosteric sea level rise. Up-to-date estimates are provided for these three important quantities. The total energy imbalance at the top of atmosphere is best assessed by taking an inventory of changes in energy storage. The main storage is in the ocean, the latest values of which are presented. Furthermore, despite differences in measurement methods and analysis techniques, multiple studies show that there has been a multidecadal increase in the heat content of both the upper and deep ocean regions, which reflects the impact of anthropogenic warming. With respect to sea level rise, mutually reinforcing information from tide gauges and radar altimetry shows that presently, sea level is rising at approximately 3 mm yr À1 with contributions from both thermal expansion and mass accumulation from ice melt. The latest data for thermal expansion sea level rise are included here and analyzed.
Computational fluid dynamic techniques have been applied to the determination of drag on oceanographic devices (expendable bathythermographs). Such devices, which are used to monitor changes in ocean heat content, provide information that is dependent on their drag coefficient. Inaccuracies in drag calculations can impact the estimation of ocean heating associated with global warming. Traditionally, ocean-heating information was based on experimental correlations which related the depth of the device to the fall time. The relation of time-depth is provided by a fall-rate equation (FRE). It is known that FRE depths are reasonably accurate for ocean environments that match the experiments from which the correlations were developed. For other situations, use of the FRE may lead to depth errors that preclude XBTs as accurate oceanographic devices. Here, a CFD approach has been taken which provides drag coefficients that are used to predict depths independent of an FRE.
A new technique to estimate three major biases of XBT probes (improper fall rate, start-up transient, and pure temperature error) has been developed. Different from the well-known and standard ''temperature error free'' differential method, the new method analyses temperature profiles instead of vertical gradient temperature profiles. Consequently, it seems to be more noise resistant because it uses the integral property over the entire vertical profile instead of gradients. Its validity and robustness have been checked in two ways. In the first case, the new integral technique and the standard differential method have been applied to a set of simulated XBT profiles having a known fall-rate equation to which various combinations of pure temperature errors, random errors, and spikes have been added for the sake of this simulation. Results indicated that the single pure temperature error has little impact on the fall-rate coefficients for both methods, whereas with the added random error and spikes the simulation leads to better results with the new integral technique than with the standard differential method. In the second case, two sets of profiles from actual XBT versus CTD comparisons, collected near Barbados in 1990 and in the western Mediterranean (2003-04 and 2008-09), have been used. The individual fall-rate coefficients and start-up transient for each XBT profile, along with the overall pure temperature correction, have been calculated for the XBT profiles. To standardize procedures and to improve the terms of comparison, the individual start-up transient estimated by the integral method was also assigned and included in calculations with the differential method. The new integral method significantly reduces both the temperature difference between XBT and CTD profiles and the standard deviation. Finally, the validity of the mean fall-rate coefficients and the mean start-up transient, respectively, for DB and T7 probes as precalculated equations was verified. In this case, the temperature difference is reduced to less than 0.18C for both datasets, and it randomly distributes around the null value. In addition, the standard deviation on depth values is largely reduced, and the maximum depth error computed with the datasets near Barbados is within 1.1% of its real value. Results also indicate that the integral method has a good performance mainly when applied to profiles in regions with either a very large temperature gradient, at the thermocline or a very small one, toward the bottom.
Expendable bathythermograph (XBT) data were the major component of the ocean temperature profile observations from the late 1960s through the early 2000s, and XBTs still continue to provide critical data to monitor surface and subsurface currents, meridional heat transport, and ocean heat content. Systematic errors have been identified in the XBT data, some of which originate from computing the depth in the profile using a theoretically and experimentally derived fall-rate equation (FRE). After in-depth studies of these biases and discussions held in several workshops dedicated to discussing XBT biases, the XBT science community met at the Fourth XBT Science Workshop and concluded that XBT biases consist of 1) errors in depth values due to the inadequacy of the probe motion description done by standard FRE and 2) independent pure temperature biases. The depth error and temperature bias are temperature dependent and may depend on the data acquisition and recording system. In addition, the depth bias also includes an offset term. Some biases affecting the XBT-derived temperature profiles vary with manufacturer/probe type and have been shown to be time dependent. Best practices for historical XBT data corrections, recommendations for future collection of metadata to accompany XBT data, impact of XBT biases on scientific applications, and challenges encountered are presented in this manuscript. Analysis of XBT data shows that, despite the existence of these biases, historical XBT data without bias corrections are still suitable for many scientific applications, and that bias-corrected data can be used for climate research
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.