BackgroundFor most classes of drugs, rapid development of therapeutics to treat emerging infections is challenged by the timelines needed to identify compounds with the desired efficacy, safety, and pharmacokinetic profiles. Fully human monoclonal antibodies (mAbs) provide an attractive method to overcome many of these hurdles to rapidly produce therapeutics for emerging diseases.MethodsIn this study, we deployed a platform to generate, test, and develop fully human antibodies to Zaire ebolavirus. We obtained specific anti-Ebola virus (EBOV) antibodies by immunizing VelocImmune mice that use human immunoglobulin variable regions in their humoral responses.ResultsOf the antibody clones isolated, 3 were selected as best at neutralizing EBOV and triggering FcγRIIIa. Binding studies and negative-stain electron microscopy revealed that the 3 selected antibodies bind to non-overlapping epitopes, including a potentially new protective epitope not targeted by other antibody-based treatments. When combined, a single dose of a cocktail of the 3 antibodies protected nonhuman primates (NHPs) from EBOV disease even after disease symptoms were apparent.ConclusionsThis antibody cocktail provides complementary mechanisms of actions, incorporates novel specificities, and demonstrates high-level postexposure protection from lethal EBOV disease in NHPs. It is now undergoing testing in normal healthy volunteers in preparation for potential use in future Ebola epidemics.
In patients undergoing knee arthroscopy, prophylactic LMWH for 1 week reduced a composite end point of asymptomatic proximal deep venous thrombosis, symptomatic venous thromboembolism, and all-cause mortality more than did graduated compression stockings.
Unprotected sexual intercourse between persons residing in or traveling from regions with Zika virus transmission is a risk factor for infection. To model risk for infection after sexual intercourse, we inoculated rhesus and cynomolgus macaques with Zika virus by intravaginal or intrarectal routes. In macaques inoculated intravaginally, we detected viremia and virus RNA in 50% of macaques, followed by seroconversion. In macaques inoculated intrarectally, we detected viremia, virus RNA, or both, in 100% of both species, followed by seroconversion. The magnitude and duration of infectious virus in the blood of macaques suggest humans infected with Zika virus through sexual transmission will likely generate viremias sufficient to infect competent mosquito vectors. Our results indicate that transmission of Zika virus by sexual intercourse might serve as a virus maintenance mechanism in the absence of mosquito-to-human transmission and could increase the probability of establishment and spread of Zika virus in regions where this virus is not present.
Background-Our hypothesis was that the changes in vascular properties responsible for aortic stiffness with aging would be greater in old male monkeys than old female monkeys. Methods and Results-We analyzed the effects of gender differences in aging on in vivo measurements of aortic pressure and diameter and on extracellular matrix of the thoracic aorta in young adult (age, 6.6Ϯ0.5 years) versus old adult (age, 21.2Ϯ0.2 years) monkeys (Macaca fascicularis). Aortic stiffness, as represented by the pressure strain elastic modulus (Ep), increased more in old male monkeys (5.08Ϯ0.81; PϽ0.01) than in old females (3.06Ϯ0.52). In both genders, collagen density was maintained, collagen-bound glycation end products increased, and collagen type 1 decreased. However, elastin density decreased significantly (from 22Ϯ1.5% to 15Ϯ1.2%) with aging (PϽ0.05) only in males. Furthermore, only old males were characterized by a decrease (PϽ0.05) in collagen type 3 (an isoform that promotes elasticity) and an increase in collagen type 8 (an isoform that promotes the neointimal migration of vascular smooth muscle cells). In contrast to the data in monkeys, collagen types 1 and 3 both increased significantly in aging rats. Conclusions-There are major species differences in the effects of aging on aortic collagen types 1 and 3. Furthermore, because alterations in collagen density, collagen content, hydroxyproline, and collagen advanced glycation end products were similar in both old male and female monkeys, these factors cannot be responsible for the greater increase in stiffness in old males. However, changes in collagen isoforms and the decrease in elastin observed only in old males likely account for the greater increase in aortic stiffness. (Circulation. 2007;116:669-676.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.