Zebrafish is becoming a popular animal model in neuropharmacology and drug discovery, mainly due to its ease of handling and low costs involved in maintenance and experimental work. This animal displays a series of complex behaviours that makes it useful for assessing the effects of psychoactive drugs. Here, adult zebrafish were used for assessment of the anxiolytic and anti-addictive properties of UFR2709, a nicotinic receptor (nAChR) antagonist, using two behavioural paradigms to test for addiction, the novel tank diving test to assess anxiety and the conditioned place preference (CPP). Furthermore, the expression of nAChR subunits α4 and α7 was measured in the zebrafish brain. The results show that UFR2709 exhibits an anxiolytic effect on zebrafish and blocks the effect evoked by nicotine on CPP. Moreover, UFR2709 significantly decreased the expression of α4 nicotinic receptor subunit. This indicates that UFR2709 might be a useful drug for the treatment of nicotine addiction.
Neuronal α4β2 nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels (LGIC) that have been implicated in nicotine addiction, reward, cognition, pain disorders, anxiety, and depression. Nicotine has been widely used as a template for the synthesis of ligands that prefer α4β2 nAChRs subtypes. The most important therapeutic use for α4β2 nAChRs is as replacement therapy for smoking cessation and withdrawal and the most successful therapeutic ligands are partial agonists. In this case, we use the N-methylpyrrolidine moiety of nicotine to design and synthesize new α4β2 nicotinic derivatives, coupling the pyrrolidine moiety to an aromatic group by introducing an ether-bonded functionality. Meta-substituted phenolic derivatives were used for these goals. Radioligand binding assays were performed on clonal cell lines of hα4β2 nAChR and two electrode voltage-clamp experiments were used for functional assays. Molecular docking was performed in the open state of the nAChR in order to rationalize the agonist activity shown by our compounds.
Nicotinic acetylcholine receptors (nAChRs), serotonin transporters (SERT) and dopamine transporters (DAT) represent targets for the development of novel nicotinic derivatives acting as multiligands associated with different health conditions, such as depressive, anxiety and addiction disorders. In the present work, a series of functionalized esters structurally related to acetylcholine and nicotine were synthesized and pharmacologically assayed with respect to these targets. The synthesized compounds were studied in radioligand binding assays at α4β2 nAChR, h-SERT and h-DAT. SERT experiments showed not radioligand [3H]-paroxetine displacement, but rather an increase in the radioligand binding percentage at the central binding site was observed. Compound 20 showed Ki values of 1.008 ± 0.230 μM for h-DAT and 0.031 ± 0.006 μM for α4β2 nAChR, and [3H]-paroxetine binding of 191.50% in h-SERT displacement studies, being the only compound displaying triple affinity. Compound 21 displayed Ki values of 0.113 ± 0.037 μM for α4β2 nAChR and 0.075 ± 0.009 μM for h-DAT acting as a dual ligand. Molecular docking studies on homology models of α4β2 nAChR, h-DAT and h-SERT suggested potential interactions among the compounds and agonist binding site at the α4/β2 subunit interfaces of α4β2 nAChR, central binding site of h-DAT and allosteric modulator effect in h-SERT.
The quinuclidine scaffold has been extensively used for the development of nicotinic acetylcholine receptor (nAChR) agonists, with hydrophobic substituents at position 3 of the quinuclidine framework providing selectivity for α7 nAChRs. In this study, six new ligands (4−9) containing a 3-(pyridin-3yloxy)quinuclidine moiety (ether quinuclidine) were synthesized to gain a better understanding of the structural−functional properties of ether quinuclidines. To evaluate the pharmacological activity of these ligands, two-electrode voltage-clamp and singlechannel recordings were performed. Only ligand 4 activated α7 nAChR. Ligands 5 and 7 had no effects on α7 nAChR, but ligands 6, 8, and 9 potentiated the currents evoked by ACh. Ligand 6 was the most potent and efficacious of the potentiating ligands, with an estimated EC 50 for potentiation of 12.6 ± 3.32 μM and a maximal potentiation of EC 20 ACh responses of 850 ± 120%. Ligand 6 increased the maximal ACh responses without changing the kinetics of the current responses. At the single-channel level, the potentiation exerted by ligand 6 was evidenced in the low micromolar concentration range by the appearance of prolonged bursts of channel openings. Furthermore, computational studies revealed the preference of ligand 6 for an intersubunit site in the transmembrane domain and highlighted some putative key interactions that explain the different profiles of the synthesized ligands. Notably, Met276 in the 15′ position of the transmembrane domain 2 almost abolished the effects of ligand 6 when mutated to Leu. We conclude that ligand 6 is a novel type I positive allosteric modulator (PAM-I) of α7 nAChR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.