Thermotoga maritima invertase (-fructosidase) hydrolyzes sucrose to release fructose and glucose, which are major carbon and energy sources for both prokaryotes and eukaryotes. The name "invertase" was given to this enzyme over a century ago, because the 1:1 mixture of glucose and fructose that it produces was named "invert sugar." Despite its name, the enzyme operates with a mechanism leading to the retention of the anomeric configuration at the site of cleavage. The enzyme belongs to family GH32 of the sequence-based classification of glycosidases. The crystal structure, determined at 2-Å resolution, reveals two modules, namely a five-bladed -propeller with structural similarity to the -propeller structures of glycosidase from families GH43 and GH68 connected to a -sandwich module. Three carboxylates at the bottom of a deep, negatively charged funnel-shaped depression of the -propeller are essential for catalysis and function as nucleophile, general acid, and transition state stabilizer, respectively. The catalytic machinery of invertase is perfectly superimposable to that of the enzymes of families GH43 and GH68. The variation in the position of the furanose ring at the site of cleavage explains the different mechanisms evident in families GH32 and GH68 (retaining) and GH43 (inverting) furanosidases.
Summary
Multicellular magnetotactic prokaryotes (MMPs) exhibit peculiar coordination of swimming along geomagnetic field lines. Approximately 40–80 cells assemble, with a helical geometry or axisymmetry, into spherical or ellipsoidal MMPs respectively. To contribute to a comprehensive understanding of bacterial multicellularity here we took multiple microscopic approaches to study the diversity, assembly, reproduction and motility of ellipsoidal MMPs. Using correlative fluorescence in situ hybridization and scanning electron microscopy analysis, we found an unexpected diversity in populations of ellipsoidal MMPs in the Mediterranean Sea. The high‐pressure freezing/freeze substitution fixation technique allowed us to show, for the first time, that cells adhere via juxtaposed membranes and are held together by a rimming lattice. Fluorescence confocal microscopy and ultrathin section images revealed not only the one‐layer hollow three‐dimensional architecture, but also periphery–core unilateral constriction of constituent cells and unidirectional binary fission of the ellipsoidal MMPs. This finding suggests the evolution toward MMPs multicellularity via the mechanism of incomplete separation of offspring. Remarkably, thousands of flagellar at the periphery surface of cells underpin the coordinated swimming of MMPs in response to mechanical, chemical, magnetic and optical stimuli, including a magnetotactic photokinesis behaviour. Together these results unveil the unique structure and function property of ellipsoidal MMPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.