Cellular networks are usually modeled by placing the base stations on a grid, with mobile users either randomly scattered or placed deterministically. These models have been used extensively but suffer from being both highly idealized and not very tractable, so complex system-level simulations are used to evaluate coverage/outage probability and rate. More tractable models have long been desirable. We develop new general models for the multi-cell signal-to-interference-plus-noise ratio (SINR) using stochastic geometry. Under very general assumptions, the resulting expressions for the downlink SINR CCDF (equivalent to the coverage probability) involve quickly computable integrals, and in some practical special cases can be simplified to common integrals (e.g., the Q-function) or even to simple closed-form expressions. We also derive the mean rate, and then the coverage gain (and mean rate loss) from static frequency reuse. We compare our coverage predictions to the grid model and an actual base station deployment, and observe that the proposed model is pessimistic (a lower bound on coverage) whereas the grid model is optimistic, and that both are about equally accurate. In addition to being more tractable, the proposed model may better capture the increasingly opportunistic and dense placement of base stations in future networks.
Cellular networks are in a major transition from a carefully planned set of large tower-mounted base-stations (BSs) to an irregular deployment of heterogeneous infrastructure elements that often additionally includes micro, pico, and femtocells, as well as distributed antennas. In this paper, we develop a tractable, flexible, and accurate model for a downlink heterogeneous cellular network (HCN) consisting of K tiers of randomly located BSs, where each tier may differ in terms of average transmit power, supported data rate and BS density. Assuming a mobile user connects to the strongest candidate BS, the resulting Signal-to-Interference-plus-Noise-Ratio (SINR) is greater than 1 when in coverage, Rayleigh fading, we derive an expression for the probability of coverage (equivalently outage) over the entire network under both open and closed access, which assumes a strikingly simple closed-form in the high SINR regime and is accurate down to -4 dB even under weaker assumptions. For external validation, we compare against an actual LTE network (for tier 1) with the other K-1 tiers being modeled as independent Poisson Point Processes. In this case as well, our model is accurate to within 1-2 dB. We also derive the average rate achieved by a randomly located mobile and the average load on each tier of BSs. One interesting observation for interference-limited open access networks is that at a given SINR, adding more tiers and/or BSs neither increases nor decreases the probability of coverage or outage when all the tiers have the same target-SINR.Comment: IEEE Journal on Selected Areas in Communications, vol. 30, no. 3, pp. 550 - 560, Apr. 201
This monograph surveys recent results of this approach and is structured in two volumes. Volume I focuses on the theory of spatial averages and contains three parts. Part I in Volume I provides a compact survey on classical stochastic geometry models. Part II in Volume I focuses on SINR stochastic geometry. Part III in Volume I is an appendix which contains mathematical tools used throughout the monograph. Volume II bears on more practical wireless network modeling and performance analysis. It is in this volume that the interplay between wireless communications and stochastic geometry is deepest and that the time-space framework alluded to above is the most important. The aim is to show how stochastic geometry can be used in a more or less systematic way to analyze the phenomena that arise in this context. Part IV in Volume II is focused on medium access control (MAC). We study MAC protocols used in ad hoc networks and in cellular networks. Part V in Volume II discusses the use of stochastic geometry for the iv quantitative analysis of routing algorithms in MANETs. Part VI in Volume II gives a concise summary of wireless communication principles and of the network architectures considered in the monograph. This part is self-contained and readers not familiar with wireless networking might either read it before reading the monograph itself, or refer to it when needed. Here are some comments on what the reader will obtain from studying the material contained in this monograph and on possible ways of reading it. For readers with a background in applied probability, this monograph provides direct access to an emerging and fast growing branch of spatial stochastic modeling (see e.g. the proceedings of conferences such as IEEE Infocom, ACM Sigmetrics, ACM Mobicom, etc. or the special issue (Haenggi, Andrews, Baccelli, Dousse, and Franceschetti 2009)). By mastering the basic principles of wireless links and of the organization of communications in a wireless network, as summarized in Volume II and already alluded to in Volume I, these readers will be granted access to a rich field of new questions with high practical interest. SINR stochastic geometry opens new and interesting mathematical questions. The two categories of objects studied in Volume II, namely medium access and routing protocols, have a large number of variants and of implications. Each of these could give birth to a new stochastic model to be understood and analyzed. Even for classical models of stochastic geometry, the new questions stemming from wireless networking often provide an original viewpoint. A typical example is that of route averages associated with a Poisson point process as discussed in Part V in Volume II. Reader already knowledgeable in basic stochastic geometry might skip Part I in Volume I and follow the path:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.