Objective
Correspondence Analysis (CA) is a multivariate graphical technique designed to explore relationships among categorical variables. Epidemiologists frequently collect data on multiple categorical variables with to the goal of examining associations amongst these variables. Nevertheless, despite its usefulness in this context, CA appears to be an underused technique in epidemiology. The objective of this paper is to present the utility of CA in an epidemiological context.
Study Design and Setting
The theory and interpretation of CA in the case of two variables and more than two variables is illustrated through two examples.
Results
The outcome from correspondence analysis is a graphical display of the rows and columns of a contingency table that is designed to permit visualization of the salient relationships among the variable responses in a low-dimensional space. Such a representation reveals a more global picture of the relationships among row-column pairs which would otherwise not be detected through a pairwise analysis.
Conclusion
When the study variables of interest are categorical, CA is an appropriate technique to explore relationships amongst variable response categories and can play a complementary role in analyzing epidemiological data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.